Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Cruz, Elsy | Santos, Lourdes | Calvo, Hiram | Anzueto-Rios, Álvaro | Villuendas-Rey, Yenny
Article Type: Research Article
Abstract: In recent years, multiple studies have highlighted the growing correlation between breast density and the risk of developing breast cancer. In this research, the performance of two convolutional neural network architectures, VGG16 and VGG19, was evaluated for breast density classification across three distinct scenarios aimed to compare the masking effect on the models performance. These scenarios encompass both binary classification (fatty and dense) and multi-class classification based on the BI-RADS categorization, utilizing a subset of the ABC-Digital Mammography Dataset. In the first experiment, focusing on cases with no masses, VGG16 achieved an accuracy of 93.33% and 90.00% for two and …four-class classification. The second experiment, which involved cases with benign masses, yielded a remarkable accuracy of 95.83% and 93.33% with VGG16, respectively. In the third and last experiment, an accuracy of 88.00% was obtained using VGG16 for the two-class classification, while VGG19 delivered an accuracy of 93.33% for the four-class classification. These findings underscore the potential of deep learning models in enhancing breast density classification, with implications for breast cancer risk assessment and early detection. Show more
Keywords: Mammography, breast tissue density, convolutional neural networks
DOI: 10.3233/JIFS-219378
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-9, 2024
Authors: Vidhya, S.S. | Mathi, Senthilkumar | Anantha Narayanan, V. | Neelakanta Iyer, Ganesh
Article Type: Research Article
Abstract: The Internet of Things lies in establishing low-power and lossy networks created by interconnecting many wireless devices with limited resources. Fascinatingly, an IPv6 routing protocol for low-power and lossy networks has become a common practice for these applications. Even though this protocol addresses the challenges of low-power networks, many issues concerning the quality of service and energy consumption are open to the research community. The protocol relies on a destination-oriented directed acyclic graph, and the root selection depends on some constraints and metrics associated with an objective function (OF). The conventional OFs select parents based on a single metric, such …as the expected transmission count or the number of nodes to travel. The current paper proposes an enhancement to the OF metric, aiming to decrease node energy and enhance the quality of service. This improvement is achieved by the factors, including the received signal strength indicator, node distance, power, link quality indicator, and expected transmission count, to select reliable communication links. The minimum power needed for reliable communication is predicted from the received signal strength indicator, node distance, receiver power, and link quality indicator using a nonlinear support vector machine. The OF value of the candidate node is computed from the power level and expected transmission count combined using the Takagi-Sugeno fuzzy model. The proposed OF is implemented in the Cooja simulator and compared against minimum rank with hysteresis OF and OF zero. A considerable improvement in the packet delivery ratio and a 37.5% reduction in energy consumption is obtained. Show more
Keywords: Classification, fuzzification, power prediction, received signal strength indicator, transmission power, link quality indicator, low power networks, TSK fuzzy model
DOI: 10.3233/JIFS-219420
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Mathi, Senthilkumar | Ramalingam, Venkadeshan | Sree Keerthi, Angara Venkata | Abhirup, Kothamasu Ganga | Sreejith, K. | Dharuman, Lavanya
Article Type: Research Article
Abstract: Long-term evolution in wireless broadband communication aims to provide secure communication for users and a high data rate for a fourth-generation network. Even though the fourth-generation network provides security, some loopholes lead to several attacks on the fourth-generation network attacks. The denial-of-service attack occurs when the user communicates with a rogue base station, and the radio base station in fourth-generation long-term evolution networks ensures that the user is attached to the rogue node assigned network. The location leak attack occurs when the packets are sniffed to find any user’s location using its temporary mobile subscriber identity. Prevention of rogue base …station and location leak attacks helps the system achieve secure communication between the participating entities. Earlier works in long-term evolution mobility management do not address preventing attacks such as denial-of-service, rogue base stations and location leaks and suffer from computational costs while providing security features. Hence, the present paper addresses the vulnerability of these attacks. It also investigates how these attacks occur and exposes communication in the fourth-generation network. To mitigate these vulnerabilities, the paper proposes a novel authentication scheme. The proposed scheme is simulated using Network Simulator 3, and the security analysis of the proposed scheme is shown using AVISPA –a security tool. Numerical analysis demonstrates that the proposed scheme significantly reduces communication overhead and computational costs associated with the fourth-generation long-term evolution authentication mechanism. Show more
Keywords: Authentication, long-term evolution, denial-of-service, attack, location leak, confidentiality
DOI: 10.3233/JIFS-219406
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Zheng, Lina | Wang, Yini | Wang, Sichun
Article Type: Research Article
Abstract: Due to the relatively high cost of labeling data, only a fraction of the available data is typically labeled in machine learning. Some existing research handled attribute selection for partially labeled data by using the importance of an attribute subset or uncertainty measure (UM). Nevertheless, it overlooked the missing rate of labels or the choice of the UM with optimal performance. This study uses discernibility relation and the missing rate of labels to UM for partially labeled data and applies it to attribute selection. To begin with, a decision information system for partially labeled data (pl-DIS) can be used to …induce two equivalent decision information systems (DISs): a DIS is constructed for labeled data (l-DIS), and separately, another DIS is constructed for unlabeled data (ul-DIS). Subsequently, a discernibility relation and the percentage of missing labels are introduced. Afterwards, four importance of attribute subset are identified by taking into account the discernibility relation and the missing rate of labels. The sum of their importance, which is determined by the label missing rates of two DISs, is calculated by weighting each of them and adding them together. These four importance may be seen as four UMs. In addition, numerical simulations and statistical analyses are carried out to showcase the effectiveness of four UMs. In the end, as its application for UM, the UM with optimal performance is used to attribute selection for partially labeled data and the corresponding algorithm is proposed. The experimental outcomes demonstrate the excellence of the proposed algorithm. Show more
Keywords: Partially labeled data, pl-DIS, uncertainty measure, attribute selection, the missing rate of labels, discernibility relation
DOI: 10.3233/JIFS-240581
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2024
Authors: Rao, Vishisht Srihari | Vinay, P. | Uma, D.
Article Type: Research Article
Abstract: A hazy image is characterized by atmospheric conditions that reduce the image’s clarity and contrast, thereby making it less visible. This degradation in image quality can hinder the performance of advanced computer vision tasks such as object detection and identifying open spaces which need to perform with high accuracy in important real world applications such as security surveillance and autonomous driving. In the recent past, the use of deep learning in image processing tasks have shown a remarkable improvement in performance, in particular, Convolutional Neural Networks (CNNs) perform superior to any other type of neural network in image related tasks. …In this paper, we propose the addition of Channel Attention and Pixel Attention layers to four state-of-the-art CNNs, namely, GMAN, U-Net, 123-CEDH and DMPHN, used for the task of image dehazing. We show that the addition of these layers yields a non-trivial improvement on the quality of the dehazed images which we show qualitatively with examples and quantitatively by obtaining PSNR and SSIM scores of 28.63 and 0.959 respectively. Through the experiments, we show that the addition of the mentioned attention layers to the GMAN architecture yields the best results. Show more
Keywords: Dehazing, deep neural network, convolutional neural network, attention
DOI: 10.3233/JIFS-219391
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Agrawalla, Bikash | Shukla, Alok Kumar | Tripathi, Diwakar | Singh, Koushlendra Kumar | Ramachandra Reddy, B.
Article Type: Research Article
Abstract: Software fault prediction, which aims to find and fix probable flaws before they appear in real-world settings, is an essential component of software quality assurance. This article provides a thorough analysis of the use of feature ranking algorithms for successful software failure prediction. In order to choose and prioritise the software metrics or qualities most important to fault prediction models, feature ranking approaches are essential. The proposed focus on applying an ensemble feature ranking algorithm to a specific software fault dataset, addressing the challenge posed by the dataset’s high dimensionality. In this extensive study, we examined the effectiveness of multiple …machine learning classifiers on six different software projects: jedit, ivy, prop, xerces, tomcat, and poi, utilising feature selection strategies. In order to evaluate classifier performance under two scenarios—one with the top 10 features and another with the top 15 features—our study sought to determine the most relevant features for each project. SVM consistently performed well across the six datasets, achieving noteworthy results like 98.74% accuracy on “jedit” (top 10 features) and 91.88% on “tomcat” (top 10 features). Random Forest achieving 89.20% accuracy on the top 15 features, on “ivy.” In contrast, NB repeatedly recording the lowest accuracy rates, such as 51.58% on “poi” and 50.45% on “xerces” (the top 15 features). These findings highlight SVM and RF as the top performers, whereas NB was consistently the least successful classifier. The findings suggest that the choice of feature ranking algorithm has a substantial impact on the fault prediction models’ predictive accuracy and effectiveness. When using various ranking systems, the research also analyses the trade-offs between computing complexity and forecast accuracy. Show more
Keywords: Software fault prediction, ensemble techniques, feature ranking, random forests, support vector machine
DOI: 10.3233/JIFS-219431
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Su, Xue | Chen, Lijun
Article Type: Research Article
Abstract: Incomplete real-valued data often misses some labels due to the high cost of labeling data. This paper investigates for partially labeled incomplete real-valued data and considers its application in semi-supervised attribute reduction. There are two decision information systems (DISs) in a partially labeled incomplete real-valued data DIS (p-IRVDIS): a labeled incomplete real-valued data DIS (l-IRVDIS) and a unlabeled incomplete real-valued data DIS (u-IRVDIS). The degree of importance on an attribute subset in a p-IRVDIS are defined using an indistinguishable relation and conditional information entropy. It is the weighted sum of l-IRVDIS and u-IRVDIS using the missing rate of label to …measure p-IRVDIS uncertainty. Based on the degree of importance, an adaptive semi-supervised attribute reduction algorithm in a p-IRVDIS is proposed. This algorithm can automatically adapt to various missing rates of label. The experimental results on 8 datasets reveal that the proposed algorithm performs statistically better than some state-of-the-art algorithms. Show more
Keywords: p-IRVDIS, the degree of importance, semi-supervised attribute reduction, indiscernibility relation, conditional information entropy
DOI: 10.3233/JIFS-239559
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Tahir Kidwai, Umar | Akhtar, Nadeem | Nadeem, Mohammad | Alroobaea, Roobaea Salim
Article Type: Research Article
Abstract: In recent years, the surge in online content has necessitated the development of intelligent recommender systems capable of offering personalized suggestions to users. However, these systems often encapsulate users within a “filter bubble”, limiting their exposure to a narrow range of content. This study introduces a novel approach to address this issue by integrating a novel diversity module into a knowledge graph-based explainable recommender system. Utilizing the Movie Lens 1M dataset, this research pioneers in fostering a more nuanced and transparent user experience, thereby enhancing user trust and broadening the spectrum of recommendations. Looking ahead, we aim to further refine …this system by incorporating an explicit feedback loop and leveraging Natural Language Processing (NLP) techniques to provide users with insightful explanations of recommendations, including a comprehensive analysis of filter bubbles. This initiative marks a significant stride towards creating a more inclusive and informed recommendation landscape, promising users not only a wider array of content but also a deeper understanding of the recommendation mechanisms at play. Show more
Keywords: Recommender system, explainable recommendations, filter bubble, knowledge graph, diversity
DOI: 10.3233/JIFS-219416
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Li, Xin | Hao, Miao | Ru, Changhai | Wang, Yong | Zhu, Junhui
Article Type: Research Article
Abstract: With the development of science and technology, people have higher and higher requirements for robots. The application of robots in industrial production is also increasing, and there are more applications in people’s lives. Therefore, robots must have a better ability to receive and process the external environment. Therefore, visual servo system appears. Pose estimation is a major problem in the current vision system. It has great application value in positioning and navigation, target tracking and recognition, virtual reality and motion estimation. Therefore, this paper put forward the research of robot arm pose estimation and control based on machine vision. This …paper first analyzed the technology of machine vision, and then carried out experiments. The accuracy and stability of the two methods for robot arm pose estimation were compared. The experimental results showed that when the noise of Kalman’s centralized data fusion method was 1 pixel, the maximum error of the X-axis angle was only 0.55, and the average error was 0.02. In Kalman’s distributed data fusion method, the average error of X-axis displacement was 0.06, and the maximum value was 17.66. In terms of accuracy, Kalman’s centralized data fusion method was better. In terms of stability, Kalman’s centralized data fusion method was also better. However, in general, these two methods had very good results, and could accurately control the position and posture of the manipulator. Show more
Keywords: Position and attitude estimation of manipulator, machine vision, kalman filter, world coordinate system
DOI: 10.3233/JIFS-237904
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Wang, Wei | Xu, Dehao | Lv, Jing | Rong, Jian | He, Donggang | Li, Shuangshuang
Article Type: Research Article
Abstract: The factors of water quality in the intensive marine stichopus japonicus aquaculture process are changing with seasons, so water temperature, salinity, pH value and nitrite were selected as auxiliary variables to measure the concentration of ammonia nitrogen. FCM (Fuzzy C-means) algorithm was adopted to classify them. Based on the EM (Expectation Maximization) algorithm, fuzzy sub-models of ammonia nitrogen concentration were constructed around each operating point, and finally the fuzzy sub-models were combined according to the posterior distribution of the characteristics of the sampling data. Based on the data collected at Xinyulong Marine Biological Seed Technology Co., Ltd, in Dalian China, …the ammonia nitrogen concentration prediction model was tested and verified. Show more
Keywords: Water quality, stichopus japonicus, expectation maximization, multi-model
DOI: 10.3233/JIFS-239032
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Shuangyuan, Li | Qichang, Li | Mengfan, Li | Yanchang, Lv
Article Type: Research Article
Abstract: With the development of information technology, the number and methods of cyber attacks continue to increase, making network security issues increasingly important. Intrusion detection has become a vital means of dealing with cyber threats. Current intrusion detection methods predominantly rely on machine learning. However, machine learning suffers from limitations in detection capability and the requirement for extensive feature engineering. Additionally, current intrusion detection datasets face the challenge of data imbalance. To address these challenges, this paper proposes a novel solution leveraging Generative Adversarial Networks (GANs) to balance the dataset and introduces an attention mechanism into the generator to efficiently extract …key feature information, the mechanism can effectively sort the key information of the data and quickly capture important features. Subsequently, a combination of 1D Convolutional Neural Networks (1DCNN) and Bidirectional Gated Recurrent Units (BiGRU) is employed to construct a classification model capable of extracting both spatial and temporal features. Furthermore, Particle Swarm Optimization (PSO) is utilized to optimize the input weights and hidden biases of the model, so as to further improve the accuracy and robustness of the model. Finally, the model is trained and implemented for network intrusion detection. To demonstrate the applicability of the model, experiments were conducted using the NSL-KDD dataset and the UNSW-NB15 dataset. The final results showed that the proposed model outperformed other models, achieving accuracies of 99.15% and 97.33% on the respective datasets. This indicates that the model improves the efficiency of network intrusion detection and better ensures the effectiveness of network security. Show more
Keywords: Intrusion detection, GAN, 1DCNN, BiGRU, PSO
DOI: 10.3233/JIFS-236285
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Liu, Xia | Zhang, Xianyong | Chen, Jiaxin | Chen, Benwei
Article Type: Research Article
Abstract: Attribute reduction is an important method in data analysis and machine learning, and it usually relies on algebraic and informational measures. However, few existing informational measures have considered the relative information of decision class cardinality, and the fusion application of algebraic and informational measures is also limited, especially in attribute reductions for interval-valued data. In interval-valued decision systems, this paper presents a coverage-credibility-based condition entropy and an improved rough decision entropy, further establishes corresponding attribute reduction algorithms for optimization and applicability. Firstly, the concepts of interval credibility, coverage and coverage-credibility are proposed, and thus, an improved condition entropy is defined …by virtue of the integrated coverage-credibility. Secondly, the fused rough decision entropy is constructed by the fusion of improved condition entropy and roughness degree. By introducing the coverage-credibility, the proposed uncertainty measurements enhance the relative information of decision classes. In addition, the nonmonotonicity of the improved condition entropy and rough decision entropy is validated by theoretical proofs and experimental counterexamples, with respect to attribute subsets and thresholds. Then, the two rough decision entropies drive monotonic and nonmonotonic attribute reductions, and the corresponding reduction algorithms are designed for heuristic searches. Finally, data experiments not only verify the effectiveness and improvements of the proposed uncertainty measurements, but also illustrate the reduction algorithms optimization through better classification accuracy than four comparative algorithms. Show more
Keywords: Rough sets, Attribute reduction, Interval-valued decision systems, Algebraic measures and informational measures, Coverage-credibility-based rough decision entropy
DOI: 10.3233/JIFS-239544
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Tian, Wen | Zhang, Yining | Fang, Qin | Liu, Weidong
Article Type: Research Article
Abstract: In order to solve the problem of imbalance between traffic demand and airspace capacity of high-altitude air route network, reduce unnecessary delay costs, and improve air route operation efficiency, the resource allocation problem of multi-objective air route network for CTOP program is studied. Taking the affected flights in the congested area of air routes as the research object, taking into account the constraints of actual flight operation, FCA time slot resource availability limit, FCA capacity limit, etc., aiming at minimizing the total delay time of each flight and maximizing the fairness of airlines, a multi-objective optimization model for air route …network resource allocation is established, and an improved NSGA-II algorithm is designed to solve the model. Based on the actual operation data of air routes in East China, the Pareto optimal solution set is obtained and compared with the traditional RBS algorithm, the average delay time is reduced by 5.49% and the average fair loss degree is reduced by 66.76%. The results show that the proposed multi-objective optimization model and the improved NSGA-II algorithm have better performance, which can take into account the fairness of each airline on the basis of reducing the total delay cost, realize the allocation of optimal flight trajectories and time slot resources, and provide a reference scheme for air traffic control resource scheduling. Show more
Keywords: Air traffic flow management, resource allocation, collaborative trajectory options program (CTOP), multi-objective optimization, genetic algorithm
DOI: 10.3233/JIFS-233588
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Gong, Zengtai | Zhang, Yuanyuan
Article Type: Research Article
Abstract: In this paper, we focus on generalized fuzzy complex numbers and propose a straightforward matrix method to solve the dual rectangular fuzzy complex matrix equations C · Z ˜ + L ˜ = R · Z ˜ + W ˜ , in which C and R are crisp complex matrices and Z ˜ , L ˜ and M ˜ …are fuzzy complex number matrices. The existing methods for solving fuzzy complex matrix equations involve separately calculating the extended solution and the corresponding parameters of the real and imaginary parts, whereby we obtain the algebraic solution of the equations. By means of the interval arithmetic and embedding approach, the n × n dual rectangular fuzzy complex linear systems could be converted into 2n × 2n fuzzy linear systems, which are also equivalent to the 4n × 4n real linear systems. By directly solving the 4n × 4n real linear systems, the algebraic solutions can be obtained. The general dual rectangular fuzzy complex matrix equations and dual rectangular fuzzy complex linear systems are investigated by the generalized inverses of matrices. Finally, some examples are given to illustrate the effectiveness of method. Show more
Keywords: Fuzzy number, fuzzy complex number, rectangular fuzzy complex number, dual rectangular fuzzy complex matrix equations
DOI: 10.3233/JIFS-239305
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-21, 2024
Authors: Aguilar-Canto, Fernando | Luján-García, Juan Eduardo | Espinosa-Juárez, Alberto | Calvo, Hiram
Article Type: Research Article
Abstract: Inferring phylogenetic trees in human populations is a challenging task that has traditionally relied on genetic, linguistic, and geographic data. In this study, we explore the application of Deep Learning and facial embeddings for phylogenetic tree inference based solely on facial features. We use pre-trained ConvNets as image encoders to extract facial embeddings and apply hierarchical clustering algorithms to construct phylogenetic trees. Our methodology differs from previous approaches in that it does not rely on preconstructed phylogenetic trees, allowing for an independent assessment of the potential of facial embeddings to capture relationships between populations. We have evaluated our method with …a dataset of 30 ethnic classes, obtained by web scraping and manual curation. Our results indicate that facial embeddings can capture phenotypic similarities between closely related populations; however, problems arise in cases of convergent evolution, leading to misclassifications of certain ethnic groups. We compare the performance of different models and algorithms, finding that using the model with ResNet50 backbone and the face recognition module yields the best overall results. Our results show the limitations of using only facial features to accurately infer a phylogenetic tree and highlight the need to integrate additional sources of information to improve the robustness of population classification. Show more
Keywords: Convolutional neural networks, deep learning, hierarchical clustering, phylogenetic tree
DOI: 10.3233/JIFS-219343
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-09, 2024
Authors: Li, Yuangang | Gao, Xinrui | Ni, Hongcheng | Song, Yingjie | Deng, Wu
Article Type: Research Article
Abstract: In this paper, an adaptive differential evolution algorithm with multi-strategy, namely ESADE is proposed to solve the premature convergence and high time complexity for complex optimization problem. In the ESADE, the population is divided into several sub-populations after the fitness value of each individual is sorted. Then different mutation strategies are proposed for different populations to balance the global exploration and local optimization. Next, a new self-adaptive strategy is designed adjust parameters to avoid falling into local optimum while the convergence accuracy has reached its maximum value. And a complex airport gate allocation multi-objective optimization model with the maximum flight …allocation rate, the maximum near gate allocation rate, and the maximum passenger rate at near gate is constructed, which is divided into several single-objective optimization model. Finally, the ESADE is applied solve airport gate allocation optimization model. The experiment results show that the proposed ESADE algorithm can effectively solve the complex airport gate allocation problem and achieve ideal airport gate allocation results by comparing with the current common heuristic optimization algorithms. Show more
Keywords: Differential evolution, multi-strategy, self-adaptive strategy, gate allocation, optimization
DOI: 10.3233/JIFS-238217
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Sowndeswari, S. | Kavitha, E. | Krishnamoorthy, Raja
Article Type: Research Article
Abstract: The development of tiny sensing nodes efficient for wireless communication in Wireless Sensor Networks (WSNs) can be attributed to the rapid advancements in processors and radio technology. Data transmission occurs through multi-hop routing in WSN, which relies on nodes’ cooperation. The collaboration between nodes has rendered these networks susceptible to various attacks. It is imperative to employ a security scheme to evaluate the dependability of nodes in distinctive malicious nodes from non-malicious nodes. In recent years, there has been a growing significance placed on security-based routing protocols with energy constraints as valuable mechanisms for enhancing the security and performance of …WSNs. A novel solution called the Deep Learning-based Hybrid Energy Efficient and Security System (DL-HE2S2) is introduced to address these challenges. The research workflow encompasses various essential stages, namely the deployment of nodes, the creation of clusters, the selection of cluster heads, the detection of malevolent nodes within each group, and the determination of optimal paths intra- and inter-clusters employing the routing algorithm for efficient packet transmission. The design of the algorithm is focused on achieving energy efficiency and enhancing network security while also taking into account various performance metrics, including a mean network lifetime of 187.244 hours, a throughput of 59.88 kilobits per second, an end-to-end latency of 11.939 milliseconds, a packet loss of 14.9%, a packet delivery ratio of 99.194%, network security at 92.026%, and energy usage of 19.424 J. This research examines the algorithm’s scalability and efficiency across various network sizes using a Network Simulator (NS-2). DL-HE2S2 offers valuable insights that can be applied to practical implementations in multiple applications. Show more
Keywords: Wireless sensor networks, energy efficiency, secured routing, cluster
DOI: 10.3233/JIFS-235322
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Xu, Liwen | Chen, Jiali
Article Type: Research Article
Abstract: Node classification in graph learning faces significant challenges due to imbalanced data, particularly for under-represented samples from minority classes. To address this issue, existing methods often rely on synthetic minority over-sampling techniques, introducing additional complexity during model training. In light of the challenges faced, we introduce GraphECC, an innovative approach that addresses numerical anomalies in large-scale datasets by supplanting the traditional CE loss function with an Enhanced Complementary Classifier (ECC) loss function’a novel modification to the CCE loss. This alteration ensures computational stability and mitigates potential numerical anomalies by incorporating a slight offset in the denominator during the computation of …the complementary probability distribution. In this paper, we present a novel training paradigm, the Enhanced Complementary Classifier (ECC), which offers “imbalance defense for free” without the need for extra procedures to improve node classification accuracy.The ECC approach optimizes model probabilities for the ground-truth class, akin to the cross-entropy method. Additionally, it effectively neutralizes probabilities associated with incorrect classes through a “guided” term, achieving a balanced trade-off between the two aspects. Experimental results demonstrate that our proposed method not only enhances model robustness but also surpasses the widely used cross-entropy training objective.Moreover, we demonstrate the versatility of our method by seamlessly integrating it with various well-known adversarial training techniques, resulting in significant gains in robustness. Notably, our approach represents a breakthrough, as it enhances model robustness without compromising performance, distinguishing it from previous attempts.The code for GraphECC can be accessed from the following link:https://github.com/12chen20/GraphECC . Show more
Keywords: Imbalanced node classification, trade-off optimization, enhanced complementary classifier (ECC), graph learning, minority classes
DOI: 10.3233/JIFS-239663
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Ali, Zeeshan | Yin, Shi | Yang, Miin-Shen
Article Type: Research Article
Abstract: In the context of fuzzy relations, symmetry refers to a property where the relationship between two elements remains the same regardless of the order in which they are considered. Natural language processing (NLP) in engineering documentation discusses the application of computational methods or techniques to robotically investigate, analyze, and produce natural language information for manufacturing contents. The NLP plays an essential role in dealing with large amounts of textual data normally recovered in engineering documents. In this paper, we expose the idea of a bipolar complex hesitant fuzzy (BCHF) set by combining the bipolar fuzzy set (BFS) and the complex …hesitant fuzzy set (CHFS). Further, we evaluate some algebraic and Schweizer-Sklar operational laws under the presence of BCHF numbers (BCHFNs). Additionally, using the above information as well as the idea of prioritized (PR) operators, we derive the idea of BCHF Schweizer-Sklar PR weighted averaging (BCHFSSPRWA) operator, BCHF Schweizer-Sklar PR ordered weighted averaging (BCHFSSPROWA) operator, BCHF Schweizer-Sklar PR weighted geometric (BCHFSSPRWG) operator, and BCHF Schweizer-Sklar PR ordered weighted geometric (BCHFSSPROWG) operator. Basic properties for the above operators are also discussed in detail, such as idempotency, monotonicity, and boundedness. Moreover, we evaluate the best way in which NLP can be applied to engineering documentations with the help of the proposed operators. Therefore, we illustrate the major technique of multi-attribute decision-making (MADM) problems based on these derived operators. Finally, we use some existing operators and try to compare their ranking results with our proposed ranking results to show the supremacy and validity of the investigated theory. Show more
Keywords: Fuzzy set (FS), hesitant FS, bipolar complex hesitant FS, Schweizer-Sklar prioritized aggregation operators, natural language processing, multi-attribute decision-making
DOI: 10.3233/JIFS-240116
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-27, 2024
Authors: Shi, Jing | Zhang, Xiao-Lin | Wang, Yong-Ping | Gu, Rui-Chun | Xu, En-Hui
Article Type: Research Article
Abstract: Deep neural networks (DNNs) are susceptible to adversarial attacks, and one important factor is that adversarial samples are transferable, i.e., adversarial samples generated by a particular network may deceive other black-box models. However, existing transferable adversarial attacks tend to modify the input features of images directly without selection to reduce the prediction accuracy in the alternative model, which would enable the adversarial samples to fall into the model’s local optimum. Alternative models differ significantly from the victim model in most cases, and while simultaneously attacking multiple models may improve transferability, gathering numerous different models is more challenging and expensive. We …simulate various models using frequency domain transformation to close the gap between the source and victim models and improve transferability. At the same time, we destroy important intermediate layer features that influence the decision of the model in the feature space. Additionally, smoothing loss is introduced to remove high-frequency perturbations. Extensive experiments demonstrate that our FM-FSTA attack generates more well-hidden and transferable adversarial samples, and achieves a high deception rate even when attacking adversarially trained models. Compared to other methods, our FM-FSTA improved attack success rate under different defense mechanisms, which reveals the potential threats of current robust models. Show more
Keywords: Deep neural networks, adversarial samples, transferable attacks
DOI: 10.3233/JIFS-234156
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Zhao, Xianhao | Wang, Mingyang | Xin, Chaoqun | Wang, Xianjie
Article Type: Research Article
Abstract: In the field of autonomous driving, driving systems need to understand and quickly respond to changes in road scenes, which makes it equally important to enhance the accuracy and real-time performance of semantic segmentation tasks in road scenes. This article proposes a lightweight road scene semantic segmentation model LR3S that integrates global contextual information based on the DeepLabV3+ framework. LR3S utilizes a lightweight GhostNetV2 network as the backbone to capture rich semantic information in images, and uses ASPP_eSE module to enhance the capture of multi-scale and detail level semantic information. In addition, a lightweight CARAFE upsampling operator is utilized to …upsample feature maps, taking advantage of CARAFE’s large receptive field and low computational cost to prevent the loss of fine-grained features and ensure the integrity of semantic information. Experimental results demonstrate that LR3S achieves an MIoU of 74.47% on the Cityscapes dataset and obtains an MIoU of 76.01% on the PASCAL VOC 2012 dataset. Compared to baseline semantic segmentation models, LR3S significantly reduces the parameter amount while maintaining segmentation accuracy, achieving a good balance between model accuracy and real-time performance. Show more
Keywords: Semantic segmentation, road scenes, attention mechanism, GhostNetV2, CARAFE
DOI: 10.3233/JIFS-239692
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Haennah, J.H. Jensha | Christopher, C. Seldev | King, G.R. Gnana
Article Type: Research Article
Abstract: Accurate SARS-CoV-2 screening is made possible by automated Computer-Aided Diagnosis (CAD) which reduces the stress on healthcare systems. Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly contagious, the transition chain can be broken through an early diagnosis by clinical knowledge and Artificial Intelligence (AI). Manual findings are time and labor-intensive. Even if Reverse Transcription-Polymerase Chain Reaction (RT-PCR) delivers quick findings, Chest X-ray (CXR) imaging is still a more trustworthy tool for disease classification and assessment. Several studies have been conducted using Deep Learning (DL) algorithms for COVID-19 detection. One of the biggest challenges in modernizing healthcare is extracting …useful data from high-dimensional, heterogeneous, and complex biological data. Intending to introduce an automated COVID-19 diagnosis model, this paper develops a proficient optimization model that enhances the classification performance with better accuracy. The input images are initially pre-processed with an image filtering approach for noise removal and data augmentation to extend the dataset. Secondly, the images are segmented via U-Net and are given to classification using the Fused U-Net Convolutional Neural Network (FUCNN) model. Here, the performance of U-Net is enhanced through the modified Moth Flame Optimization (MFO) algorithm named Chaotic System-based MFO (CSMFO) by optimizing the weights of U-Net. The significance of the implemented model is confirmed over a comparative evaluation with the state-of-the-art models. Specifically, the proposed CSMFO-FUCNN attained 98.45% of accuracy, 98.63% of sensitivity, 98.98% of specificity, and 98.98% of precision. Show more
Keywords: COVID-19 classification, deep Learning, U-Net, Convolutional Neural Network (CNN), Moth Flame Optimization (MFO)
DOI: 10.3233/JIFS-230523
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Zhan, Huawei | Han, Chengju | Li, Junjie | Wei, Gaoyong
Article Type: Research Article
Abstract: Aiming at the problems of slow speed and low accuracy of traditional neural network systems for real-time gesture recognition in complex backgrounds., this paper proposes DMS-yolov8-a gesture recognition method to improve yolov8. This algorithm replaces the Bottleneck convolution module in the backbone network of yolov8 with variable row convolution DCNV2, and increases the feature convolution range without increasing the computation amount through a more flexible feeling field. in addition, the self-developed MPCA attention module is added after the feature output layer of the backbone layer, which improves the problem of recognizing the accuracy of difference gestures in complex backgrounds by …effectively combining the feature information of the contextual framework, taking into account the multi-scale problem of the gestures in the image, this paper introduces the SPPFCSPS module, which realizes multi-feature fusion and improves real-time accuracy of detection. Finally, the model proposed in this paper is compared with other models, and the proposed DMS-yolov8 model achieves good results on both publicly available datasets and homemade datasets, with the average accuracy up to 97.4% and the average mAP value up to 96.3%, The improvements proposed in this paper are effectively validated. Show more
Keywords: Gesture recognition, yolov8, DCNV2, MPCA, feature fusion
DOI: 10.3233/JIFS-238629
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Meenakshi, A. | Bramila, M.
Article Type: Research Article
Abstract: Molecular structures are characterised by the Hosoya polynomial and Wiener index, ideas from mathematical chemistry and graph theory. The graph representation of a chemical compound that has atoms as vertices and chemical bonds as edges is called a molecular graph, and the Hosoya polynomial is a polynomial related to this graph. As a graph attribute that remains unchanged under graph isomorphism, the Hosoya polynomial is known as a graph invariant. It offers details regarding the quantity of distinct non-empty subgraphs within a specified graph. A topological metric called the Wiener index is employed to measure the branching complexity and size …of a molecular graph. For every pair of vertices in a molecular network, the Wiener index is the total of those distances. In this paper, discussed the Hosoya polynomial, Wiener index and Hyper-Wiener index of the Abid-Waheed graphs (AW)a 8 and (AW)a 10 . This graph is similar to Jahangir’s graph. Further, we have extended the research work on the applications of the described graphs. Show more
Keywords: Wiener index, Abid-Waheed, Hosoya polynomial, diameter, distance, connected graph
DOI: 10.3233/JIFS-236051
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-8, 2024
Authors: Lin, Jiayi
Article Type: Research Article
Abstract: At this stage, network communication technology is increasingly mature, and intelligent wearable products are also widely used in human daily life. Wearable products are popular with users because of their numerous types, complete functions and convenient services. Wearable products integrate interaction technology, and users can interact with products. However, how to improve the user’s interaction experience and reduce the user’s cognitive burden on the interaction interface is an urgent problem in the current product interaction design. Therefore, based on the analysis of the types and related technologies of wearable products, this paper made a specific analysis of the interaction design …of wearable products, and established an interaction design model. At the same time, the wearable fall detection system was also tested by machine learning algorithm. The experimental results showed that the average test result of the algorithm in this paper was 87.39%, while the average test result of the traditional algorithm was 83.79%. In terms of the missed alarm rate of fall detection, the average test result of this algorithm was 6.4%, while the average test result of the traditional algorithm was 12.33%. In terms of fall detection sensitivity, the average test result of this algorithm was 92.50%, while the average test result of the traditional algorithm was 88.24%. Compared with traditional algorithms, this method performs better, with lower missed detection rate and higher sensitivity. Innovative combination of machine learning algorithm, through three-dimensional coordinate system, differentiation and vector sum formula, improves the accuracy and reliability of fall detection. In conclusion, the algorithm in this paper can effectively optimize the relevant performance of the system, thus improving the accuracy of the system’s fall detection. Show more
Keywords: 5 G network communication technology, wearable products, interaction design, wearable fall detection system
DOI: 10.3233/JIFS-237837
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Valadez-Godínez, Sergio | Sossa, Humberto | Santiago-Montero, Raúl
Article Type: Research Article
Abstract: The Associative Pattern Classifier (APC) was designed as an associative memory, focusing particularly on pattern classification. This implies that the training memory is constructed in a single operation and pattern classification also occurs in a single process. It is important to note that the APC translates the input patterns through a translation vector, which represents the average of all input patterns. Until now, there is no theoretical framework to explain the inner workings of the APC. Its relevance is inferred from the fact that several studies have been conducted using it as a foundation. This paper seeks to provide a …theoretical comprehension of the APC’s operation to facilitate future enhancements. We found the APC creates a system in static equilibrium through concurrent vectors at the origin (translation vector), resulting in a balanced separation of patterns. However, the APC cannot achieve complete pattern separation because of the presence of a neutral region. The neutral region is defined by all the points that define the separation hyperplanes. The points over the hyperplanes cannot be classified by the APC. Additionally, we discovered that the APC is unable to accurately classify the translation vector, which could be included as part of the input patterns. Our previous research showed that the APC is unsuccessful in achieving the linear separation of the AND function. In this research, we also broaden the examination of the AND function to illustrate that achieving linear separation is not feasible because the separation line represents a neutral region. The APC demonstrated exceptional performance when tested with artificial datasets where patterns were distributed over balanced regions, thus operating as an efficient multiclass and non-linear classifier. Nevertheless, the performance of the APC is lower when tested with real-world databases, making the APC inaccurate due to its restricted inner workings. Show more
Keywords: Classifier, pattern, associative memory, class, classification
DOI: 10.3233/JIFS-219347
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-23, 2024
Authors: Zhang, Wei | Zheng, Hongxuan | Zhang, Runyu
Article Type: Research Article
Abstract: In this paper, a self-organizing RBF (SORBF) neural network with an adaptive threshold is proposed based on improved particle swarm optimization (IPSO) and neural strength (NS). The parameters and structure of SORBF can be optimized simultaneously and dynamically. Moreover, the tiresome problem of threshold setting is solved. Firstly, the network size and parameters of SORBF are mapped into the particle information of PSO. Secondly, an IPSO algorithm, based on diversity inertia weight and elite knowledge guiding, is proposed to reduce the probability of the population falling into the local optimum. Then, IPSO is used for optimizing the parameters of SORBF. …Based on neuron growth intensity and competition intensity, SORBF can realize the hidden neuron addition and deletion adaptively. Moreover, the thresholds during the structure adjustment can be provided adaptively based on the network scale and neuron strength, which avoids the subjectivity setting and can improve the adaptive ability. Finally, the convergence analysis of IPSO is provided to ensure the performance of SORBF. Experiment results show that the proposed SORBF has good self-organizing ability and compact network structure compared with other methods. Show more
Keywords: RBF neural network, PSO, self-organization, neural strength, adaptive threshold
DOI: 10.3233/JIFS-239569
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Pandiyarajan, Abinaya | Jagatheesaperumal, Senthil Kumar | Thayanithi, Manonmani
Article Type: Research Article
Abstract: This study explores how Electronic Health Records (EHR) might be transformed in the context of the rapid improvements in cloud computing and IoT technology. But worries about sensitive data security and access management when it moves to large cloud provider networks surface. Even if they are secure, traditional encryption techniques sometimes lack the granularity needed for effective data protection. We suggest the Secure Access Policy – Ciphertext Policy – Attribute-based Encryption (SAPCP-ABE) algorithm as a solution to this problem. This method ensures that only authorized users may access the necessary data while facilitating fine-grained encrypted data exchange. The three main …phases of SAPCP-ABE are retrieval and decoding, where the system verifies users’ access restrictions, secure outsourcing that prioritizes critical attributes, and an authenticity phase for early authentication. Performance tests show that SAPCP-ABE is a better scheme than earlier ones, with faster encryption and decryption speeds of 5 and 5.1 seconds for 512-bit keys, respectively. Security studies, numerical comparisons, and implementation outcomes demonstrate our suggested approach’s efficacy, efficiency, and scalability. Show more
Keywords: Attribute-based encryption, electronic health record, access policy, cloud providers, cloud computing
DOI: 10.3233/JIFS-240341
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Sageengrana, S. | Selvakumar, S.
Article Type: Research Article
Abstract: Distraction and fatigue are serious issues in online learning, and they directly impact educational outcomes. To achieve excellent academic achievement, students need to focus on their studies without being distracted or fatigued. Learners frequently overlook crucial information, directions, and concepts while they are passive and sleepy. They tend to miss important content, instructions, and concepts. Iris Angle Position (IAP) and electroencephalography (EEG) were used in this model to identify the behaviour of learners. Specifically, a Deep Convolutional Neural Network (DCNN) is constructed to extract IAP in order to accurately capture the learner’s facial area. EEG signals are effectively handled and …sorted using deep reinforcement learning (DRL). The learners’ facial landmarks are retrieved from a frame using the dlib toolbox. Only eye landmark points from face landmarks alone are focused on in order to determine the learner’s behaviour. When the learners EEG signals and Iris positions are monitored simultaneously, it’s helpful to identify the learner’s fatigue state (LFS) and the learner’s distraction state (LDS). The Brain Vision Algorithm (BVA) uses iris position and minimal facial landmarks, along with brain activity, to properly identify the learner’s level of distraction and exhaustion. When a student is detected as being preoccupied or sleepy, an alert goes off automatically, and the educator gets performance feedback. Iris position data and brain-computer interface-based EEG signal values are utilised to identify distraction and sleepiness. Comparative tests have demonstrated that this innovative method offers fast and high-accuracy student activity detection in virtual learning settings. Applying the suggested approach to different existing classifiers yields an F-Score of 91.92%, a recall of 93.87%, and a precision of 92.37% . The results showed that the detection rates for both distracted and sleepy phases were higher than those attained with other currently used techniques. Show more
Keywords: Drowsiness, online learning, iris position, EEG signals, distraction, brain vision algorithm
DOI: 10.3233/JIFS-237016
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2024
Authors: Canul-Chin, Miguel Angel | Moguel-Ordóñez, Yolanda Beatriz | Martin-Gonzalez, Anabel | Brito-Loeza, Carlos | Legarda-Saenz, Ricardo
Article Type: Research Article
Abstract: Yucatan has a variety of plant species of melliferous importance. The honey produced in Yucatan has several special properties that make it one of the most demanded internationally. Analyzing the pollen grains present in honey is essential to determine its quality and identify its plants of origin. This study is a time-consuming process that must be carried out by highly trained palynologists. In this work, we propose an improved model based on a fully convolutional neural network for the automatic detection of pollen grains in microscopic images of four plant species of Yucatan to contribute to the analysis of the …honey designation of origin. Show more
Keywords: Pollen analysis, object detection, palynology, deep learning
DOI: 10.3233/JIFS-219379
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-8, 2024
Authors: Hashmi, Hina | Dwivedi, Rakesh | Kumar, Anil | Kumar, Aman
Article Type: Research Article
Abstract: The rapid advancements in satellite imaging technology have brought about an unprecedented influx of high-resolution satellite imagery. One of the critical tasks in this domain is the automated detection of buildings within satellite imagery. Building detection holds substantial significance for urban planning, disaster management, environmental monitoring, and various other applications. The challenges in this field are manifold, including variations in building sizes, shapes, orientations, and surrounding environments. Furthermore, satellite imagery often contains occlusions, shadows, and other artifacts that can hinder accurate building detection. The proposed method introduces a novel approach to improve the boundary detection of detected buildings in high-resolution …remote sensed images having shadows and irregular shapes. It aims to enhance the accuracy of building detection and classification. The proposed algorithm is compared with Customized Faster R-CNNs and Single-Shot Multibox Detectors to show the significance of the results. We have used different datasets for training and evaluating the algorithm. Experimental results show that SESLM for Building Detection in Satellite Imagery can detect 98.5% of false positives at a rate of 8.4%. In summary, SESLM showcases high accuracy and improved robustness in detecting buildings, particularly in the presence of shadows. Show more
Keywords: Object detection, image analysis, faster R-CNN, CNN, satellite imagery, object localization
DOI: 10.3233/JIFS-235150
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-21, 2024
Authors: Huang, De Ling | Huang, Yi Fan | Yang, Yu Qiao
Article Type: Research Article
Abstract: Practical Byzantine Fault Tolerance (PBFT), the widest-used consensus algorithm in the alliance blockchain, suffers from high communications complexity and relatively low scalability, making it difficult to support large-scale networks. To overcome these limitations, we propose a secure and scalable consensus algorithm, Vague Sets-based Double Layer PBFT (VSDL-PBFT). Roles and tasks of consensus nodes are redesigned. Three-phase consensus process of the original PBFT is optimized. Through these approaches, the communication complexity of the algorithm is significantly reduced. In order to better fit the complexity of voting in the real world, we use a vague set to select primary nodes of consensus …groups. This can greatly reduce the likelihood of malicious nodes being selected as the primary nodes. The experimental results show that the VSDL-PBFT consensus algorithm improves the system’s fault tolerance, it also achieves better performance in algorithm security, communications complexity, and transaction throughput compared to the baseline consensus algorithms. Show more
Keywords: Blockchain, consensus algorithm, Byzantine fault tolerance, PBFT
DOI: 10.3233/JIFS-239745
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Rodriguez-Bazan, Horacio | Sidorov, Grigory | Escamilla-Ambrosio, Ponciano Jorge
Article Type: Research Article
Abstract: Recently, Android device usage has increased significantly, and malicious applications for the Android ecosystem have also increased. Security researchers have studied Android malware analysis as an emerging issue. The proposed methods employ a combination of static, dynamic, or hybrid analysis along with Machine Learning (ML) algorithms to detect and classify malware into families. These families often exhibit shared similarities among their members or with other families. This paper presents a new method that combines Fuzzy Hashing and Natural Language Processing (NLP) techniques to find Android malware families based on their similarities by applying reverse engineering to extract the features and …compute fuzzy hashing of the preprocessed code. This relationship allows us to identify the families according to their features. A study was conducted using a database test of 2,288 samples from diverse ransomware families. An accuracy in classifying Android ransomware malware up to 98.46% was achieved. Show more
Keywords: Android malware analysis, android ransomware, cybersecurity, fuzzy hashing, natural language processing
DOI: 10.3233/JIFS-219367
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Arulmurugan, A. | Kaviarasan, R. | Garnepudi, Parimala | Kanchana, M. | Kothandaraman, D. | Sandeep, C.H.
Article Type: Research Article
Abstract: This research focuses on scene segmentation in remotely sensed images within the field of Remote Sensing Image Scene Understanding (RSISU). Leveraging recent advancements in Deep Learning (DL), particularly Residual Neural Networks (RESNET-50 and RESNET-101), and the research proposes a methodology involving feature fusing, extraction, and classification for categorizing remote sensing images. The approach employs a dataset from the University of California Irvine (UCI) comprising twenty-one groups of pictures. The images undergo pre-processing, feature extraction using the mentioned DL frameworks, and subsequent categorization through an ensemble classification structure combining Kernel Extreme Learning Machine (KELM) and Support Vector Machine (SVM). The paper …concludes with optimal results achieved through performance and comparison analyses. Show more
Keywords: Remote sensing, image scene classification, deep learning, feature extraction, RESNET- 101, ensemble
DOI: 10.3233/JIFS-235109
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2023
Authors: Yang, Yi | Huang, Huiling | Wu, FeiBin | Han, Jun | Ma, Mengyuan | Zhang, Yantong | Feng, Yanbing
Article Type: Research Article
Abstract: This paper introduces a novel neural network architecture and an enhanced data synthesis method that significantly boost the performance in removing complex smoke from images. The architecture features a multi-branch and multi-scale feature fusion design, which effectively integrates multiple feature streams and adaptively restores the background by identifying specific smoke characteristics within the image. A newly designed Fourier residual block is incorporated to capture frequency domain information, enabling the network to process and transform information across both spatial and frequency domains. To improve the network’s generalization ability and robustness, an in-depth analysis of the imaging process in smoky environments was …conducted, leading to an improved method for synthesizing smoke images. This methodology facilitates the creation of a more varied and realistic training dataset, substantially enhancing the neural network’s capabilities in image restoration. Experimental results show that this approach is highly effective on both synthetic and real-world smoke datasets, outperforming existing image de-smoking methods in terms of quantitative metrics and visual perception. The code for this method is available at https://github.com/Exiagit/MFSR. Show more
Keywords: Single image smoke removal, frequency domain learning, data synthesis method
DOI: 10.3233/JIFS-239146
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Nieves, Juan Carlos | Osorio, Mauricio | Rojas-Velazquez, David | Magallanes, Yazmín | Brännström, Andreas
Article Type: Research Article
Abstract: Humans have evolved to seek social connections, extending beyond interactions with living beings. The digitization of society has led to interactions with non-living entities, such as digital companions, aimed at supporting mental well-being. This literature review surveys the latest developments in digital companions for mental health, employing a hybrid search strategy that identified 67 relevant articles from 2014 to 2022. We identified that by the nature of the digital companions’ purposes, it is important to consider person profiles for: a) to generate both person-oriented and empathetic responses from these virtual companions, b) to keep track of the person’s conversations, activities, …therapy, and progress, and c) to allow portability and compatibility between digital companions. We established a taxonomy for digital companions in the scope of mental well-being. We also identified open challenges in the scope of digital companions related to ethical, technical, and socio-technical points of view. We provided documentation about what these issues mean, and discuss possible alternatives to approach them. Show more
Keywords: Conversational agents, well-being, mental health, trustworthy artificial intelligence
DOI: 10.3233/JIFS-219336
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Sánchez-Jiménez, Eduardo | Cuevas-Chávez, Alejandra | Hernández, Yasmín | Ortiz-Hernandez, Javier | Hernández-Aguilar, José Alberto | Martínez-Rebollar, Alicia | Estrada-Esquivel, Hugo
Article Type: Research Article
Abstract: Machine learning algorithms have been used in diverse areas among applications, including healthcare. However, to fit an effective and optimal machine learning model, the hyperparameters need to be tuned. This process is commonly referred to as Hyperparameter Optimization and comprises several approaches. We combined three Hyperparameter Optimization techniques (Bayesian Optimization, Particle Swarm Optimization, and Genetic Algorithm) with three classifiers (Random Forest, Support Vector Machine, and XGBoost) to identify the best combination of hyperparameters that maximize model performance. We use the Framingham dataset to test the proposal. For classifier performance, the Support Vector Machine obtained the best result in recall (96.40%) …and F-score (93.86%), while XGBoost obtained the best result in precision (96.30%) and specificity (96.36%). In the accuracy metric, both classifiers achieved 95%. Bayesian optimization had the best results in terms of accuracy, precision, specificity, and F-score metrics. Both Particle Swarm Optimization and Genetic Algorithm obtained the best result in the recall metric. Show more
Keywords: Bayesian optimization, framingham dataset, genetic algorithm, heart disease, hyperparameter default value, hyperparameter optimization, machine learning, particle swarm optimization, support vector machine, XGBoost
DOI: 10.3233/JIFS-219376
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Cosío-León, M.A. | Martínez-Vargas, Anabel | Rodríguez-Cortés, Gabriela
Article Type: Research Article
Abstract: It is well-known that tuning a metaheuristic is a critical task because the performance of a metaheuristic and the quality of its solutions depend on its parameter values. However, finding a good parameter setting is a time-consuming task. In this work, we apply the upper confidence bound (UCB) algorithm to automate offline tuning in a (1 + 1)-evolution strategy. Preliminary results show that our proposed approach is a less costly method.
Keywords: Upper confidence bound algorithm, meta-optimizer, bandit problems, reinforcement learning
DOI: 10.3233/JIFS-219362
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Akhmetova, Dilyara | Akhmetov, Iskander | Pak, Alexander | Gelbukh, Alexander
Article Type: Research Article
Abstract: The paper focuses on the importance of coherence and preserving the breadth of content in summaries generated by the extractive text summarization method. The study utilized the dataset containing 16,772 pairs of extractive and corresponding abstractive summaries of scientific papers specifically tailored to increase text coherence. We smoothed the extractive summaries with a Large Language Model (LLM) fine-tuning approach and evaluated our results by applying the coefficient of variation approach. The statistical significance of the results was assessed using the Kolmogorov-Smirnov test and Z-test. We observed an increase in coherence in the predicted texts, highlighting the effectiveness of our proposed …methods. Show more
Keywords: Coherence, cohesion, extractive summary, abstractive summary, GPT2, summarization, seq2seq, random forest
DOI: 10.3233/JIFS-219353
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Ibarra Carrillo, Mario Alfredo | Montiel Pérez, Jesús Yaljá | Molina Lozano, Herón
Article Type: Research Article
Abstract: Today, it is the amount of data that defines the existence of mankind. Scientists respond to the large amount of required calculations by developing hardware in several directions. One of them is to increase the number of arithmetic elements. Another direction is to create new architectures that represent new algorithms for processing numerical data. We have chosen the second direction by developing a new systolic core architecture, which implies an improvement in efficiency, i.e. performing the same task with the same number of arithmetic elements but reducing the latency. Measurements are made in terms of computational capacity and the number …of arithmetic elements involved in the operations. The results of the tests are compared with data from a number of selected articles. Today, we have achieved 3.2GFlops with only two modules. In the future, we plan to integrate up to four of our cores in a system with its own memory and management processor and at a higher operating frequency. Show more
Keywords: Systolic array, systolic tensor core, accelerated matrix multiplication, accelerated convolution
DOI: 10.3233/JIFS-219361
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Tang, Ao | Wang, Xiaofeng | Peng, Qingyuan | Wang, Junxia | Yang, Yi | He, Fei | Hua, Yingying
Article Type: Research Article
Abstract: A CNF formula with each clause of length k and each variable occurring 4s times, where positive occurrences are 3s and negative occurrences are s , is a regular (3s + s , k )-CNF formula (F 3s +s ,k formula). The random regular exact (3s + s , k )-SAT problem is whether there exists a set of Boolean variable assignments such that exactly one literal is true for each clause in the F 3s +s ,k formula. By introducing a random instance generation model, the satisfiability phase transition of the solution is analyzed by …using the first moment method, the second moment method, and the small subgraph conditioning method, which gives the phase transition point s* of the random regular exact (3s + s , k )-SAT problem for k ≥3. When s < s* , F 3s +s ,k formula is satisfiable with high probability; when s > s* , F 3s +s ,k formula is unsatisfiable with high probability. Finally, through the experimental verification, the results show that the theoretical proofs are consistent with the experimental results. Show more
Keywords: Random regular exact (3s + s, k)-SAT problem, first moment method, second moment method, small subgraph conditioning method, phase transition
DOI: 10.3233/JIFS-238254
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Kolesnikova, Olga | Yigezu, Mesay Gemeda | Gelbukh, Alexander | Abitte, Selam | Sidorov, Grigori
Article Type: Research Article
Abstract: Twitter has experienced a tremendous surge in popularity over recent years, establishing itself as a prominent social media platform with a large user base. However, with this increased usage, there has been a concerning rise in the number of individuals resorting to derogatory language and expressing their opinions in a demeaning manner toward others. This surge in hate speech has drawn significant attention to the field of sentiment analysis, which aims to develop algorithms capable of detecting and analyzing emotions expressed in social networks using intuitive approaches. This paper focuses on addressing the complex task of detecting hate speech and …aggressive behavior while performing target classification. We explored various deep-learning approaches, including LSTM, BiLSTM, CNN, and GRU. Each offers unique capabilities for capturing different aspects of the input data. We proposed an ensemble approach that combines the top three performing models. This ensemble approach benefits from the diverse strengths of each individual model showing F1 score of 0.85 for English-HS, 0.94 for English-TR, 0.92 for English-AB, 0.84 for Spanish-HS, 0.86 for Spanish-TR, 0.97 for Spanish-AB, 0.74 for multilingual-HS, 0.94 for multilingual-TR, and 0.88 for multilingual-AB. Show more
Keywords: Hate speech, aggressive behavior, target classification, ensemble learning, deep learning, target classification
DOI: 10.3233/JIFS-219350
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Valencia-Valencia, Alex I. | Gomez-Adorno, Helena | Stephens Rhodes, Christopher | Bel-Enguix, Gemma | Trueba, Ojeda | Fuentes Pineda, Gibran
Article Type: Research Article
Abstract: Social media platforms, such as Twitter (now X), are a major source of communication. Identifying communicative intentions is useful, as it encapsulates the latent motivations that drive text creation. This intention is also helpful in understanding the message, context, and audience. This study proposes a method for detecting communicative intentions in tweets using Jakobson’s language functions. We constructed a meticulously annotated dataset, drawing from the extensive RepLab2013 corpus. Our dataset underwent rigorous scrutiny by linguistic annotators who analyzed over 12,000 tweets individually. These experts identified the dominant language function within each tweet by employing diverse strategies to ensure precise labeling …quality. The outcome demonstrated a noteworthy Kappa agreement score of 0.6, reflecting a strong inter-annotator reliability. Subsequently, these functions were mapped to the corresponding intention categories. We employed logistic regression and support vector machines (SVM) algorithms to classify intention in tweets and explored various pre-processing techniques, incorporating n-grams and bag-of-words representations. Furthermore, we expanded our research using pre-trained large language models, incorporating the latest state-of-the-art techniques in natural language processing. Show more
Keywords: Intention, communicative intention, tweets, language functions, intention identification, n-grams, logistic regression, SVM, deep learning
DOI: 10.3233/JIFS-219357
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Rasham, Tahair | Kutbi, Marwan Amin | Hussain, Aftab | Chandok, Sumit
Article Type: Research Article
Abstract: The objective of this research is to propose some new fixed point theorems for fuzzy-dominated operators that satisfy a nonlinear contraction on a closed ball in a complete b -multiplicative metric space. Our strategy involves the use of a combination of two distinct kinds of mappings: one belongs to a weaker class of strictly increasing mappings, and the other is a class of dominated mappings. In order to demonstrate the validity of our new findings, we provide instances that are both illustrative and substantial. Finally, in order to illustrate the novelty of our findings, we provide applications that allow us …to derive the common solution to integral and fractional differential equations. Our findings have a significant impact on the interpretation of a large number of previously published studies, both present and historical. Show more
Keywords: Fixed point, b-multiplicative metric space, generalized nonlinear contraction, fuzzy dominated operators, graph contraction, ordered fuzzy mappings, integral equation, fractional differential equation
DOI: 10.3233/JIFS-238250
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Zhang, Xin-jie | Li, Jun-qing | Liu, Xiao-feng | Tian, Jie | Duan, Pei-yong | Tan, Yan-yan
Article Type: Research Article
Abstract: Enterprises have increasingly focused on integrated production and transportation problems, recognizing their potential to enhance cohesion across different decision-making levels. The whale optimization algorithm, with its advantages such as minimal parameter control, has garnered attention. In this study, a hybrid whale optimization algorithm (HWOA) is designed to settle the distributed no-wait flow-shop scheduling problem with batch delivery (DNWFSP-BD). Two objectives are considered concurrently, namely, the minimization of the makespan and total energy consumption. In the proposed algorithm, four vectors are proposed to represent a solution, encompassing job scheduling, factory assignment, batch delivery and speed levels. Subsequently, to generate high-quality candidate …solutions, a heuristic leveraging the Largest Processing Time (LPT) rule and the NEH heuristic is introduced. Moreover, a novel path-relinking strategy is proposed for a more meticulous search of the optimal solution neighborhood. Furthermore, an insert-reversed block operator and variable neighborhood descent (VND) are introduced to prevent candidate solutions from converging to local optima. Finally, through comprehensive comparisons with efficient algorithms, the superior performance of the HWOA algorithm in solving the DNWFSP-BD is conclusively demonstrated. Show more
Keywords: Distributed no-wait flow shop, batch delivery, hybrid whale optimization algorithm, path-relinking
DOI: 10.3233/JIFS-238627
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Fan, Zhou | Yanjun, Shen | Zebin, Wu
Article Type: Research Article
Abstract: In this article, a non-fragile adaptive fuzzy observer is proposed for nonlinear systems with uncertain external disturbance and measurement noise. Firstly, the nonlinear system is augmented by an output filtered transformation. The output with measurement disturbance is put into the state equation of the augment system. Then, we introduce fuzzy logic system (FLS) to approximate the measurement disturbance, and construct an augmented non-fragile adaptive fuzzy observer for the augment system. A Lyapunov function is constructed to reveal that the characteristic of estimation errors is uniformly ultimately boundedness (UUB). Finally, two experimental simulations are offered to confirm the validity of the …proposed design method. Show more
Keywords: Non-fragile, high-gain observer, adaptive observer, fuzzy logic system
DOI: 10.3233/JIFS-237271
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Rajesh Kannan, A. | Thirupathi, G. | Murali Krishnan, S.
Article Type: Research Article
Abstract: Consider the graph G , with the injection Ω from node set to the first p + q natural numbers. Let us assume that the ceiling function of the classical average of the node labels of the end nodes of each link is the induced link assignment Ω * . If the union of range of Ω of node set and the range of Ω * of link set is all the first p + q natural numbers, then Ω is called a classical mean labeling. A super classical mean graph is a graph …with super classical mean labeling. In this research effort, we attempted to address the super classical meanness of graphs generated by paths and those formed by the union of two graphs. Show more
Keywords: Labeling, super classical mean labeling, super classical mean graph
DOI: 10.3233/JIFS-232328
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-7, 2024
Authors: Ihtisham, Shumaila | Mustafa, Ghulam | Qureshi, Muhammad Nauman | Manzoor, Sadaf | Alamgir, | Khan, Adnan
Article Type: Research Article
Abstract: This study explores the distribution of order statistics of the Alpha Power Pareto (APP) distribution. Alpha Power Pareto is a more flexible distribution proposed by adding an extra parameter in the well-known Pareto distribution. This paper focuses on the derivation of single and product moment of the APP order statistics. Additionally, a recurrence link for single moments of order statistics is established. Moreover, analytical formulas of Rényi and q-entropy for APP order statistics are obtained.
Keywords: Order statistics, q-entropy, rényi entropy, recurrence relation, single and product moments
DOI: 10.3233/JIFS-231873
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Shafi, Smd | Sathiya Kumar, C.
Article Type: Research Article
Abstract: Identifying diseases using chest X-rays is challenging because more medical professionals are needed. A chest X-ray contains many features, making it difficult to pinpoint the factors causing a disease. Moreover, healthy individuals are more common than those with illnesses, and various diseases occur at different rates. To diagnose the disease accurately using X-ray images, extracting significant features and addressing unbalanced data is essential. To resolve these challenges, a proposed ensemble self-attention-based deep neural network aims to tackle the problem of unbalanced information distribution by creating a new goal factor. Additionally, the InceptionV3 architecture is trained to identify significant features. The …proposed objective function is a performance metric that adjusts the ratio of positive to negative instances, and the suggested loss function can dynamically mitigate the impact of many negative observations by reducing each cross-entropy term by a variable amount. Tests have shown that ensemble self-attention performs well on the ChestXray14 dataset, especially regarding the dimension around the recipient’s characteristics curves. Show more
Keywords: Deep neural networks, cross-weighted entropy loss, data with discrepancies, feature extraction, X-ray
DOI: 10.3233/JIFS-236444
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Yang, Wenyang | Li, Mengdi
Article Type: Research Article
Abstract: The development of computer vision and artificial intelligence provides technical support for objective evaluation of classroom teaching, and promotes the implementation of personalized teaching by teachers. In traditional classroom teaching, due to limitations, teachers are unable to timely understand and evaluate the effectiveness of classroom teaching through students’ classroom behavior, making it difficult to meet students’ personalized learning needs. Using artificial intelligence, big data and other digital technologies to analyze student classroom learning behavior is helpful to understand and evaluate students’ learning situation, thus improving the quality of classroom teaching. By using the method of literature analysis, the paper sorts …out relevant domestic and foreign literature in the past five years, and systematically analyzes the methods of student classroom behavior recognition supported by deep learning. Firstly, the concepts and processes of student classroom behavior recognition are introduced and analyzed. Secondly, it elaborates on the representation methods of features, including image features, bone features, and multimodal fusion. Finally, the development trend of student classroom behavior recognition methods and the problems that need to be further solved are summarized and analyzed, which provides reference for future research on student classroom behavior recognition. Show more
Keywords: Behavior recognition, object detection, skeleton pose, deep learning
DOI: 10.3233/JIFS-238228
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Geetha, R. | Priya, E. | Sivakumar, Kavitha
Article Type: Research Article
Abstract: Purpose: Automated diagnosis of acute cerebral ischemic stroke lesions (ACISL) is an evolving science. Early detection and exact delineation of ACISL automatically from diffusion-weighted magnetic resonance (DWMR) images are crucial for initiating prompt treatment. Thus, this work aims to determine the appropriate slice out of 60 pieces using multi-fractal analysis (MFA) and to segment the lesions in DWMR images using a hybrid optimization method. Features extracted from the segmented images were clinically correlated with the modified Rankin Scale (mRS). Methods: Thirty-one real-time stroke patients’ images were collected from Rajiv Gandhi Government General Hospital, Chennai, India. Multiple …MRI slices were taken from each patient and filtered using an anisotropic diffusion filter (ADF). These filtered images were skull-stripped automatically by the maximum entropy thresholding technique incorporating mathematical morphological operations (MEM). The multi-fractal analysis (MFA) identifies the prominent slice with the significant infarct lesion. An isodata algorithm that integrated differential evolution with the particle swarm optimization method based on Kapur’s (IDPK) and Otsu’s (IDPO) approaches was attempted to segment the ACISL. Finally, the geometric and moment features extracted from the segmented lesions categorized the stroke severity and were correlated with the mRS. Results: The findings of the experimental work confirm that the suggested IDPK approach achieved usual normalized values for image similarity indices such as Sokal-Michener Coefficient (98.51%), Roger-Tanimoto Coefficient (90.16%), Sokel-Sneath-2 (91.04%), and Sorenson Index (90.04%) are superior to IDPO. Statistical significance proved that the segmented lesions’ area (r = 0.820, p < 0.0001) and perimeter (r = 0.928, p < 0.0001) were strongly correlated with the mild and moderate criteria of mRS. Conclusion: The proposed work effectively detected ischemic stroke lesions and their severity within the studied image groups. It could be a promising and potential tool to aid radiologists in validating their diagnosis. Show more
Keywords: Ischemic stroke lesion, magnetic resonance imaging, multi-fractal analysis, isodata algorithm, differential evolution with particle swarm optimization, modified Rankin Scale
DOI: 10.3233/JIFS-233883
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2024
Authors: Lavanya, J. | Kavi Priya, S.
Article Type: Research Article
Abstract: The paper addresses the optimization challenges in cloud resource task execution within the container paradigm, introducing the Multi-Objective Comprehensive Container Scheduling and Resource Allocation (MOCCSRA) scheme. It aims to enhance cost-effectiveness and efficiency by utilizing the Tuna Swarm Optimization (TSO) technique to optimize task planning and resource allocation. This novel approach considers various objectives for task scheduling optimization, including energy efficiency, compliance with service level agreements (SLAs), and quality of service (QoS) metrics like CPU utilization, memory usage, data transmission time, container-VM correlation, and container grouping. Resource allocation decisions are guided by the VM cost and task completion period factors. …MOCCSRA distinguishes itself by tackling the multi-objective optimization challenge for task scheduling and resource allocation, producing non-dominated Pareto-optimal solutions. It effectively identifies optimal tasks and matches them with the most suitable VMs for deploying containers, thereby streamlining the overall task execution process. Through comprehensive simulations, the results demonstrate MOCCSRA’s superiority over traditional container scheduling methods, showcasing reductions in resource imbalance and notable enhancements in response times. This research introduces an innovative and practical solution that notably advances the optimization field for cloud-based container systems, meeting the increasing demand for efficient resource utilization and enhanced performance in cloud computing environments. Show more
Keywords: Cloud container, task scheduling, resource allocation, DSTS, multi-objective optimization, tuna swarm optimizer, pareto optimality
DOI: 10.3233/JIFS-234262
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Su, Jiafu | Xu, Baojian | Liu, Hongyu | Chen, Yijun | Zhang, Xiaoli
Article Type: Research Article
Abstract: As an emerging concept in knowledge management (KM), green knowledge management plays a crucial role in the sustainable development of enterprises. A reasonable assessment of an enterprise’s green knowledge management capabilities can help the company effectively manage the embedded green knowledge within its operational processes, thereby achieving self-reinforcement of competitive advantages for the enterprise. Therefore, this paper proposes a multi-criteria classification method based on interval-valued intuitionistic fuzzy entropy weight method-TOPSIS-Sort-B (EWM-TOPSIS-Sort-B) to assess the green knowledge management capabilities of enterprises. In this method, expert assessments are expressed using interval-valued intuitionistic fuzzy sets. A new entropy weight method is introduced into …TOPSIS-Sort-B to determine the weights of various evaluation indicators, and TOPSIS-Sort-B is employed to classify and rate each evaluation scheme. It is worth noting that this paper has improved the TOPSIS-Sort-B method by not converting interval-valued intuitionistic fuzzy sets into precise values throughout the entire evaluation process, thus avoiding information loss. Finally, we applied a case of knowledge management capability assessment to validate the proposed method, and conducted sensitivity analysis and comparative analysis on this approach. The analysis results indicate that variations in the parameter ϑ of the interval-valued intuitionistic fuzzy aggregation operator lead to changes in criterion weights and the comprehensive evaluation matrix, resulting in unordered changes in the final classification results. Due to the absence of transformation of interval values in this study, compared to the four classification methods of TOPSISort-L, the classification results are more detailed, and the evaluation levels are more pronounced. Show more
Keywords: Interval-valued intuitionistic fuzzy set, TOPSIS-Sort-B, entropy weight method, green knowledge management capability
DOI: 10.3233/JIFS-239001
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2024
Authors: Xiao, Le | Chen, Xiaolin | Shan, Xin
Article Type: Research Article
Abstract: News summary generation is an important task in the field of intelligence analysis, which can provide accurate and comprehensive information to help people better understand and respond to complex real-world events. However, traditional news summary generation methods face some challenges, which are limited by the model itself and the amount of training data, as well as the influence of text noise, making it difficult to generate reliable information accurately. In this paper, we propose a new paradigm for news summary generation using Large Language Model(LLM) with powerful natural language understanding and generative capabilities. We also designed News Summary Generator (NSG), …which aims to select and evolve the event pattern population and generate news summaries, so that using LLM extracts structured event patterns from events contained in news paragraphs, evolves the event pattern population using a genetic algorithm, and selects the most adaptive event patterns to input into LLM in order to generate news summaries. The experimental results show that the news summary generator is able to generate accurate and reliable news summaries with some generalization ability. Show more
Keywords: News summary generation, large language model, genetic algorithm, evolution
DOI: 10.3233/JIFS-237685
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Zheng, Quanchang
Article Type: Research Article
Abstract: We investigate the semi-online problem of MapReduce scheduling on two parallel machines. We aim to minimize the makespan. Jobs are released over-list, and each job includes a map task and a reduce task. The job’s map task can be preemptive and scheduled simultaneously onto different machines, however, the reduce task is non-preemptive. The job’s reduce task needs to wait for its map task to complete before starting. We consider the following two versions: Firstly, we know the processing time of the largest reduce task beforehand, and then design a 4/3-competitive optimal semi-online algorithm. Secondly, we know in advance the value …of the reduce task with the largest processing time and the the total sum of the processing times. Then we present a 4/3-competitive semi-online algorithm. We conclude that the algorithm is the best possible when the largest reduce task meets certain conditions. Show more
Keywords: MapReduce system, semi-online, scheduling, competitive ratio, makespan
DOI: 10.3233/JIFS-239276
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Lu, Mingzhen
Article Type: Research Article
Abstract: The idea of sustainable development has become more important in resolving environmental issues and fostering a healthy coexistence of human endeavors with the natural world. Internet of Things (IoT) technology is expanding across many industries, and it is also advancing in agriculture and the agricultural environment. The planning and design for intelligent gardens using a unique Sunflower Optimized-Enhanced Support Vector Machine (SFO-ESVM) is thoroughly analyzed and researched in this study. The development and plan of intelligent gardens are investigated using agricultural IoT technologies and agricultural landscapes. First, we used the SFO method to select the best garden plan inspired by …the mathematical patterns observed in sunflower seed groupings. Next, we use an ESVM model to assess how well each plant species fits into the planned garden. The SFO-ESVM considers several variables, such as soil qualities, climatic information, plant traits, and ecological requirements, to choose the best plants. Additionally, we create an intelligent control system that combines sensors, actuators, and IoT technologies to track and regulate the environmental parameters of the garden. The SFO-ESVM-based conceptual planning and design framework for smart gardens is proposed and systematically extended to give scientific direction for the agricultural IoT of smart gardens. The proposed method was then tested in a real-world garden environment. The outcomes show that the SFO-ESVM framework-based intelligent design and execution of the sustainable development-oriented garden combines ecological principles with innovative optimization methods. Show more
Keywords: Intelligent design and realization, garden, internet of things (IoT), sustainable development, sunflower optimized-enhanced support vector machine (SFO-ESVM)
DOI: 10.3233/JIFS-234540
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: He, Shun | Li, Chaorong | Wang, Xingjie | Zeng, Anping
Article Type: Research Article
Abstract: This paper proposes a watermarking method that can be used for the copyright protection of DNN models, utilizing learnable block-wise image transformation techniques and a secret key to embed a watermark. A black-box watermarking approach is used, which does not require a specific predefined training or trigger set, allowing for the remote verification of model ownership. As a result, this method can achieve copyright protection using authentication methods for DNN models. Results of experiments on established datasets [1, 2 ] indicate that the original watermark is not easily overwritten by pirated watermarks. Moreover, its performance in pruning attack experiments is …similar to that observed in the studies cited above. However, our approach demonstrates stronger robustness against fine-tuning attacks, while also achieving higher image classification accuracy. Show more
Keywords: DNN watermark, block-wise image transformation, black-box watermark, robustness
DOI: 10.3233/JIFS-240274
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Long, Huimin | Zheng, Hang | Chen, Ming | Liu, Chengjian
Article Type: Research Article
Abstract: The detection of communication signals in heterogeneous electromagnetic environments currently relies primarily on a one-dimensional statistical feature threshold method. However, this approach is highly sensitive to dynamic changes in the environment, fluctuations in signal-to-noise ratios, and complex noise. To address these limitations, this paper proposes a novel time-frequency diagram based on high-order accumulation for signal detection. Traditional time-frequency diagrams suffer from poor noise suppression ability and unclear features. However, higher-order cumulants can effectively overcome these shortcomings. Currently, methods based on higher-order cumulants are typically limited to one-dimensional signals. Yet, two-dimensional time-frequency signal diagrams can represent a broader array of features. …This paper employs higher-order accumulation to extract time-frequency features from the received signal, thereby transforming the conventional radio detection problem into an image recognition challenge. By merging the advantages of higher-order accumulations and time-frequency diagrams, we propose the use of higher-order accumulation time-frequency diagrams for signal detection. Extensive experimental simulations demonstrate that the proposed time-frequency diagram exhibits strong anti-noise performance and effectively suppresses frequency bias from multiple perspectives. The performance of the Higher-Order Cumulant-Time Frequency (HOC-TF) indicated lower Root Mean Square Error (RMSE) compared with the Short-Time Fourier Transform-Time Frequency (STFT-TF) and Wavelet Transform-Time Frequency (WT-TF). Additionally, compared to the STFT-TF and WT-TF methodologies, the novel time-frequency diagram introduced demonstrates superior stability using the Singular Value Decomposition (SVD) method. Moreover, by combining the new time-frequency diagram with the deep learning YOLOV5 network, signal detection and modulation identification of communication signals can be achieved. Show more
Keywords: Signal detection, higher-order cumulant, novel time-frequency diagram
DOI: 10.3233/JIFS-237988
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Wang, Hanpeng | Xiong, Hengen
Article Type: Research Article
Abstract: An improved genetic algorithm is proposed for the Job Shop Scheduling Problem with Minimum Total Weight Tardiness (JSSP/TWT). In the proposed improved genetic algorithm, a decoding method based on the Minimum Local Tardiness (MLT) rule of the job is proposed by using the commonly used chromosome coding method of job numbering, and a chromosome recombination operator based on the decoding of the MLT rule is added to the basic genetic algorithm flow. As a way to enhance the quality of the initialized population, a non-delay scheduling combined with heuristic rules for population initialization. and a PiMX (Precedence in Machine crossover) …crossover operator based on the priority of processing on the machine is designed. Comparison experiments of simulation scheduling under different algorithm configurations are conducted for randomly generated larger scale JSSP/TWT. Statistical analysis of the experimental evidence indicates that the genetic algorithm based on the above three improvements exhibits significantly superior performance for JSSP/TWT solving: faster convergence and better scheduling solutions can be obtained. Show more
Keywords: Improved genetic algorithm, total weight tardiness, minimum local tardiness, PiMX
DOI: 10.3233/JIFS-236712
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Ma, Chengfei | Yang, Xiaolei | Lu, Heng | He, Siyuan | Liu, Yongshan
Article Type: Research Article
Abstract: When calculating participants’ contribution to federated learning, addressing issues such as the inability to collect complete test data and the impact of malicious and dishonest participants on the global model is necessary. This article proposes a federated aggregation method based on cosine similarity approximation Shapley value method contribution degree. Firstly, a participant contribution calculation model combining cosine similarity and the approximate Shapley value method was designed to obtain the contribution values of the participants. Then, based on the calculation model of participant contribution, a federated aggregation algorithm is proposed, and the aggregation weights of each participant in the federated aggregation …process are calculated by their contribution values. Finally, the gradient parameters of the global model were determined and propagated to all participants to update the local model. Experiments were conducted under different privacy protection parameters, data noise parameters, and the proportion of malicious participants. The results showed that the accuracy of the algorithm model can be maintained at 90% and 65% on the MNIST and CIFAR-10 datasets, respectively. This method can reasonably and accurately calculate the contribution of participants without a complete test dataset, reducing computational costs to a certain extent and can resist the influence of the aforementioned participants. Show more
Keywords: Federated aggregation algorithm, contribution assessment, cosine similarity, Shapley value, equitable distribution
DOI: 10.3233/JIFS-236977
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Rachamadugu, Sandeep Kumar | Pushphavathi, T.P.
Article Type: Research Article
Abstract: This paper introduces an innovative approach, the LS-SLM (Local Search with Smart Local Moving) technique, for enhancing the efficiency of article recommendation systems based on community detection and topic modeling. The methodology undergoes rigorous evaluation using a comprehensive dataset extracted from the “dblp. v12.json” citation network. Experimental results presented herein provide a clear depiction of the superior performance of the LS-SLM technique when compared to established algorithms, namely the Louvain Algorithm (LA), Stochastic Block Model (SBM), Fast Greedy Algorithm (FGA), and Smart Local Moving (SLM). The evaluation metrics include accuracy, precision, specificity, recall, F-Score, modularity, Normalized Mutual Information (NMI), betweenness …centrality (BTC), and community detection time. Notably, the LS-SLM technique outperforms existing solutions across all metrics. For instance, the proposed methodology achieves an accuracy of 96.32%, surpassing LA by 16% and demonstrating a 10.6% improvement over SBM. Precision, a critical measure of relevance, stands at 96.32%, showcasing a significant advancement over GCR-GAN (61.7%) and CR-HBNE (45.9%). Additionally, sensitivity analysis reveals that the LS-SLM technique achieves the highest sensitivity value of 96.5487%, outperforming LA by 14.2%. The LS-SLM also demonstrates superior specificity and recall, with values of 96.5478% and 96.5487%, respectively. The modularity performance is exceptional, with LS-SLM obtaining 95.6119%, significantly outpacing SLM, FGA, SBM, and LA. Furthermore, the LS-SLM technique excels in community detection time, completing the process in 38,652 ms, showcasing efficiency gains over existing techniques. The BTC analysis indicates that LS-SLM achieves a value of 94.6650%, demonstrating its proficiency in controlling information flow within the network. Show more
Keywords: Recommender Systems (RS), BagofWords (BoW), Pearson Correlation Co-efficient based Latent Dirichlet Allocation (PCC-LDA), Linear Scaling based Smart Local Moving (LS-SLM), Time Frequency and Inverse Document Frequency (TF-IDF), Community detection
DOI: 10.3233/JIFS-233851
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Lalitha, V. | Latha, B.
Article Type: Research Article
Abstract: The most valuable information of Hyperspectral Image (HSI) should be processed properly. Using dimensionality reduction techniques in two distinct approaches, we created a structure for HSI to collect physiological and diagnostic information. The tissue Oxygen Saturation Level (StO2 ) was extracted using the HSI approach as a physiological characteristic for stress detection. Our research findings suggest that this unique characteristic may not be affected by humidity or temperature in the environment. Comparing the standard StO2 reference and pressure concentrations, the social stress assessments showed a substantial variance and considerable practical differentiation. The proposed system has already been evaluated on …tumor images from rats with head and neck cancers using a spectrum from 450 to 900 nm wavelength. The Fourier transformation was developed to improve precision, and normalize the brightness and mean spectrum components. The analysis of results showed that in a difficult situation where awareness could be inexpensive due to feature possibilities for rapid classification tasks and significant in measuring the structure of HSI analysis for cancer detection throughout the surgical resection of wildlife. Our proposed model improves performance measures such as reliability at 89.62% and accuracy at 95.26% when compared with existing systems. Show more
Keywords: Hyperspectral Image, dimensionality reduction, stress tests, cancer detection, fourier coefficients
DOI: 10.3233/JIFS-236935
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Fan, Jianping | Chai, Mingxuan | Wu, Meiqin
Article Type: Research Article
Abstract: In this manuscript, we construct a Multi-Criteria Decision-Making (MCDM) model to study the new energy vehicle (NEV) battery supplier selection problem. Firstly, we select criteria to build an evaluation index system. Secondly, SAWARA and MEREC methods are used to calculate subjective and objective weights in the ranking process, respectively, and PTIHFS (Probabilistic Triangular Intuitionistic Hesitant Fuzzy Set) is employed to describe the decision maker’s accurate preferences in performing the calculation of subjective weights. Then, the game theory is used to find the satisfactory weights. We use TFNs to describe the original information in the MARCOS method to obtain the optimal …alternative. Finally, a correlation calculation using Spearman coefficients is carried out to compare with existing methods and prove the model’s validity. Show more
Keywords: PTIHFS, SWARA, MEREC, MARCOS, game theory
DOI: 10.3233/JIFS-231975
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2024
Authors: Devi, Salam Jayachitra | Doley, Juwar | Gupta, Vivek Kumar
Article Type: Research Article
Abstract: Object detection has made significant strides in recent years, but it remains a challenging task to accurately and quickly identify and detect objects. While humans can easily recognize objects in images or videos regardless of their appearance, computers face difficulties in this task. Object detection plays a crucial role in computer vision and finds applications in various domains such as healthcare, security, agriculture, home automation and more. To address the challenges of object detection, several techniques have been developed including RCNN, Faster RCNN, YOLO and Single Shot Detector (SSD). In this paper, we propose a modified YOLOv5s architecture that aims …to improve detection performance. Our modified architecture incorporates the C3Ghost module along with the SPP and SPPF modules in the YOLOv5s backbone network. We also utilize the Adam and Stochastic Gradient Descent (SGD) optimizers. The paper also provides an overview of three major versions of the YOLO object detection model: YOLOv3, YOLOv4 and YOLOv5. We discussed their respective performance analyses. For our evaluation, we collected a database of pig images from the ICAR-National Research Centre on Pig farm. We assessed the performance using four metrics such as Precision (P), Recall (R), F1-score and mAP @ 0.50. The computational results demonstrate that our method YOLOv5s architecture achieves a 0.0414 higher mAP while utilizing less memory space compared to the original YOLOv5s architecture. This research contributes to the advancement of object detection techniques and showcases the potential of our modified YOLOv5s architecture for improved performance in real world applications. Show more
Keywords: Object detection, YOLO, convolutional neural networks, pig, and computer vision
DOI: 10.3233/JIFS-231032
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2024
Authors: Shivkumar, S. | Amudha, J. | Nippun Kumaar, A.A.
Article Type: Research Article
Abstract: Navigation of a mobile robot in an unknown environment ensuring the safety of the robot and its surroundings is of utmost importance. Traditional methods, such as pathplanning algorithms, simultaneous localization and mapping, computer vision, and fuzzy techniques, have been employed to address this challenge. However, to achieve better generalization and self-improvement capabilities, reinforcement learning has gained significant attention. The concern of privacy issues in sharing data is also rising in various domains. In this study, a deep reinforcement learning strategy is applied to the mobile robot to move from its initial position to a destination. Specifically, the Deep Q-Learning algorithm …has been used for this purpose. This strategy is trained using a federated learning approach to overcome privacy issues and to set a foundation for further analysis of distributed learning. The application scenario considered in this work involves the navigation of a mobile robot to a charging point within a greenhouse environment. The results obtained indicate that both the traditional deep reinforcement learning and federated deep reinforcement learning frameworks are providing 100% success rate. However federated deep reinforcement learning could be a better alternate since it overcomes the privacy issue along with other advantages discussed in this paper. Show more
Keywords: Federated deep reinforcement learning, navigation, path-planning, mobile robot, robotics
DOI: 10.3233/JIFS-219428
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Jayswal, Hardik S. | Chaudhari, Jitendra | Patel, Atul | Makwana, Ashwin | Patel, Ritesh | Dubey, Nilesh | Ghajjar, Srushti | Sharma, Shital
Article Type: Research Article
Abstract: A nation’s progress is directly linked to the effective functioning of its agricultural sector. The detection and classification of plant disease is an essential component of the agricultural industry. Plant diseases may result in substantial financial losses due to decreased crop production. As per the Food and Agriculture Organization of the United Nations, it is estimated that plant diseases result in a reduction of approximately 10-16% in global crop yields annually. Farmers are traditionally relying on visual inspection, using naked eye observation, as the primary method for detecting plant diseases. This involves a meticulous examination of crops to identify any …visible signs of diseases. However, manual disease detection can lead to delayed identification, resulting in significant crop losses. Various methods, coupled with machine learning classifiers, were demonstrated effectiveness in scenarios involving manual feature extraction and limited datasets. However, to handle larger datasets, deep learning models such as Inception V4, ResNet-152, EfficientNet-B5, and DenseNet-201 were studied and implemented. Among these models, DenseNet-201 exhibited superior performance and accuracy compared to the previous methodology. Additionally, A Fine-tuning Deep Learning Model called SympDense was developed, which surpassed other deep learning models in terms of accuracy. Show more
Keywords: Plant diseases, classification, deep learning, SympDense
DOI: 10.3233/JIFS-239531
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Yuan, Chao | Zhao, Ziqi
Article Type: Research Article
Abstract: With the acceleration of urbanization, the concept of smart city is rising gradually. Wireless sensor network as an important technical support of smart city, its application in environmental monitoring and water resources management has a profound impact on economic growth. Water resource is one of the most dependent resources for human beings. With the growth of world population and the rapid development of economy, water resource crisis is constant, water pollution, water shortage and water waste coexist. How to build a perfect water resource economic policy is a worldwide problem at present. At present, the formulation of water resources policies …is often based on experience or the knowledge system of decision makers. Due to the dynamic nature of water resources utilization and the incomplete information of decision makers, there are often policy failures, which affect economic growth. Based on this, this paper uses system dynamics model to study the mechanism of water resources management policies affecting economic growth by taking Gansu, Tianjin and Zhejiang as three qualitatively representative arid areas, transitional areas and water-rich areas. The research results show that under the same water resources policy coupling, different regions also have different eco-economic effects. The effect of coupled water resources policy is better than that of single water resources management policy. Show more
Keywords: Smart city, environmental monitoring, water resources management, economic growth
DOI: 10.3233/JIFS-242195
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Ngo, Quoc Trinh | Nguyen, Linh Quy | Vu, Trung Hieu | Nguyen, Long Khanh | Tran, Van Quan
Article Type: Research Article
Abstract: Cemented paste backfill (CPB), a mixture of wet tailings, binding agent, and water, proves cost-effective and environmentally beneficial. Determining the Young modulus during CPB mix design is crucial. Utilizing machine learning (ML) tools for Young modulus evaluation and prediction streamlines the CPB mix design process. This study employed six ML models, including three shallow models Extreme Gradient Boosting (XGB), Gradient Boosting (GB), Random Forest (RF) and three hybrids Extreme Gradient Boosting-Particle Swarm Optimization (XGB-PSO), Gradient Boosting-Particle Swarm Optimization (GB-PSO), Random Forest-Particle Swarm Optimization (RF-PSO). The XGB-PSO hybrid model exhibited superior performance (coefficient of determination R2 = 0.906, root mean square error …RMSE = 19.535 MPa, mean absolute error MAE = 13.741 MPa) on the testing dataset. Shapley Additive Explanation (SHAP) values and Partial Dependence Plots (PDP) provided insights into component influences. Cement/Tailings ratio emerged as the most crucial factor for enhancing Young modulus in CPB. Global interpretation using SHAP values identified six essential input variables: Cement/Tailings, Curing age, Cc, solid content, Fe2 O3 content, and SiO2 content. Show more
Keywords: Cemented paste backfill (CPB), young modulus, interpretable machine learning, cement/tailings, mix design
DOI: 10.3233/JIFS-237539
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2024
Authors: Hussain, Abrar | Zhang, Nan | Ullah, Kifayat | Garg, Harish | Al-Quran, Ashraf | Yin, Shi
Article Type: Research Article
Abstract: The q-rung orthopair fuzzy set (q-ROFS) is a moderate mathematical model, that has diverse capabilities to handle uncertain and ambiguous information of human opinion during the decision analysis process. The Aczel Alsina operations are more flexible and valuable aggregating tools with parameter values ϻ ⩾ 1, reflecting smooth and accurate information by aggregating awkward and redundant information. The theory of the Choquet integral operator is also used to express the interaction between preferences or criteria by incorporating certain values of preferences. The primary features of this article are to derive some dominant mathematical approaches by combining two different theories like Choquet integral …operators and operations of Aczel Alsina tools namely “q-rung orthopair fuzzy Choquet integral Aczel Alsina average” (q-ROFCIAAA), and “q-rung orthopair fuzzy Choquet integral Aczel Alsina geometric” (q-ROFCIAAG) operators. Some special cases and notable characteristics are also demonstrated to show the feasibility of derived approaches. Based on our derived aggregation approaches, a multi-attribute decision-making (MADM) technique aggregates redundant and unpredictable information. In light of developed approaches, a numerical example study to evaluate suitable safety equipment in the construction sector. To reveal the intensity and applicability of derived approaches by contrasting the results of prevailing approaches with currently developed AOs. Show more
Keywords: q-rung orthopair fuzzy values, choquet integral operators, aczel alsina operations, and decision support system
DOI: 10.3233/JIFS-240169
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Wu, Xiongyu | Yan, Yixuan | Zhu, Wenxi | Yang, Nina
Article Type: Research Article
Abstract: BACKGROUND: In recent years, Despite the proven economic growth brought by AI technology globally, the adoption of AI in the construction industry faces obstacles. To better promote the adoption of AI technology in the construction domain, this study, based on the extended Unified Theory of Acceptance and Use of Technology (UTAUT) model, delves into the key factors influencing the adoption of AI technology in the construction industry. By introducing personal-level influencing factors such as AI anxiety and personal innovativeness, the UTAUT model is extended to comprehensively understand users’ attitudes and adoption behaviors towards AI technology. METHODOLOGY: The research …framework is based on the Unified Theory of Acceptance and Use of Technology (UTAUT) with the added constructs of artificial intelligence anxiety and individual Innovativeness. These data were collected through a combination of online and offline surveys, with a total of 258 valid data collected and analyzed using structural equation modeling. RESULTS: The study found that Usage Behavior (UB) in adopting Artificial Intelligence (AI) is positively influenced by several factors. Specifically, Performance Expectancy (PE) (β= 0.266, 95%), Effort Expectancy (EE) (β= 0.262, 95%), and Social Influence (SI) (β= 0.131, 95%) were identified as significant predictors of UB. Additionally, Facilitating Conditions (FC) (β= 0.168, 95%) also positively influenced UB.Moreover, the study explored the moderating effects of Artificial Intelligence Anxiety and Individual Innovativeness on the relationships between Performance Expectancy (PE), Effort Expectancy (EE), Social Influence (SI), and Facilitating Conditions (FC) with the Usage Behavior of AI technology. PRACTICAL IMPLICATIONS: This study lie in informing industry stakeholders about the multifaceted dynamics influencing AI adoption. Armed with this knowledge, organizations can make informed decisions, implement effective interventions, and navigate the challenges associated with integrating AI technology into the construction sector. Show more
Keywords: UTAUT, artificial intelligence, construction industry
DOI: 10.3233/JIFS-240798
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2024
Authors: AL-Qadri, Mohammed | Gao, Peiwei | Zhang, Hui | Zhao, Zhiqing | Chen, Lifeng | Cen, Feng | Zhang, Jun
Article Type: Research Article
Abstract: Crack detection in concrete buildings is crucial for assessing structural health, but it poses challenges due to complex backgrounds, real-time requirements, and high accuracy demands. Deep learning techniques, including U-Net and Fully Convolutional Networks (FCN), have shown promise in crack detection. However, they are sensitive to real-world environmental variations, impacting robustness and accuracy. This paper compares the performance of U-Net and FCN for concrete crack detection on bridges using raw images under various conditions. A dataset of 157 images (100 for training, 57 for testing) was used, and the models were evaluated based on Dice similarity coefficient and Jaccard index. …FCN slightly outperformed U-Net in accuracy (94.88% vs. 94.21%), while U-Net had a slight advantage in validation (93.55% vs. 92.99%). These findings provide valuable insights for automated infrastructure maintenance and repair. Show more
Keywords: Cracks detection, concrete buildings, deep learning, U-Net, Fully Convolutional Networks (FCN)
DOI: 10.3233/JIFS-239709
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Parthiban, P. | Vaisakhi, V.S.
Article Type: Research Article
Abstract: Wireless sensor network (WSN) collect and detect data in real time, but their battery life limits their lifetime. The CH selection process increases network overhead and reduces lifetime, but it considers node processing and energy limitations. To solve that problem this research methodology proposed Multi Objective Energy trust - Aware Optimal Clustering and Secure Routing (MOETAOCSR) protocol. At first, the trust factors such as direct and indirect factors are calculated. Thus, the calculated values are given as input to the SDLSTM to detect the malicious node and normal node. Here, the network deployment process is initially carried out and then …the cluster is formed by HWF-FCM. From the clustered sensor nodes, the cluster head is selected using Golden Jackal Siberian Tiger Optimization (GJSTO) approach. Then, the selection of CH the paths are learned by using the Beta Distribution and Scaled Activation Function based Deep Elman Neural Network (BDSAF-DENN) and from the detected paths the optimal paths are selected using the White Shark Optimization (WSO). From the derived path sensed data securely transferred to the BS for further monitoring process using FPCCRSA. The proposed technique is implemented in a MATLAB platform, where its efficiency is assessed using key performance metrics including network lifetime, packet delivery ratio, and delay. Compared to existing models such as EAOCSR, RSA, and Homographic methods, the proposed technique achieves superior results. Specifically, it demonstrates a 0.95 improvement in throughput, 0.8 enhancement in encryption time, and a network lifetime of 7.4. Show more
Keywords: Four point curve cryptographic and rivest shamir adleman (FPCCRSA), Haversine with weighted function based fuzzy c-means clustering (HWF-FCM), wireless sensor network, Cluster head (CH), sigmoid deep long short term memory (SDLSTM)
DOI: 10.3233/JIFS-236739
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Yu, Hongliang | Peng, Zhen | Wu, Zhaoliang | He, Zirui | Huang, Chun
Article Type: Research Article
Abstract: To address the existing shortcomings in the research on the coupling of safety risk factors in subway tunnel construction using the shallow-buried excavation method, this paper conducts a coupled analysis and dynamic simulation of the safety risks associated with this construction method. Firstly, by analyzing the mechanisms and effects of risk coupling in shallow-buried excavation construction of subway tunnels, this study divides the risk system into four risk subsystems (human, material, management, and environment), establishes an evaluation index system for the coupling of safety risks, calculates the comprehensive weight values of the risk indicators using the AHP-entropy weight method, and …constructs a risk coupling degree model by combining the inverse cloud model and efficacy function. Subsequently, based on the principles of system dynamics, a causal relationship diagram and a system dynamics simulation model for the coupling of “human-material” risks in construction are established using Vensim PLE software. Finally, the case study of the underground excavation section of Chengdu Metro Line 2 is employed to perform dynamic simulation using the established model. By adjusting the relevant risk coupling coefficients and simulation duration, the impact of the coupling of various risk factors on the safety risk level of the human-material coupling system is observed. The simulation results demonstrate that: 1) Heterogeneous coupling of human and material risks has a particularly significant effect on the system’s safety risks; 2) Violations by personnel and initial support structure defects are key risk coupling factors. The findings of this study provide new insights for decision-makers to assess the safety risk of shallow-buried excavation construction in subway tunnel. Show more
Keywords: Shallow-buried excavation method, risk coupling, coupling degree model, system dynamics, simulation analysis
DOI: 10.3233/JIFS-239674
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Saleh Mohamed Naser, Naser | Serte, Sertan | Al-Turjman, Fadi
Article Type: Research Article
Abstract: Deep learning has recently made great progress leading to revolutionizing image recognition, speech recognition, and natural language processing tasks that were previously challenging to make using traditional techniques. Image classification offers a lot of potential for architectural design, even though it is rarely used to uncover new techniques. It can be used to determine the client’s preferences and design a building that satisfies those preferences. The different architectural styles based on culture, region, and time are one of the main challenges for image classification in architecture. Hence, it can be challenging for untrained clients to recognize an architectural style, and …sometimes some buildings are made up of various types that are difficult to classify as a single style. This paper investigates the potential of employing state-of-art cutting-edge image classification algorithms in houses classification. In addition, the paper proposes the uses of Shifted Patch Tokenization (SPT) and Locality Self-Attention (LSA) in order to enhance the performance of Vision transformer (ViT) when trained to classify house images with a small dataset, opposed to the regular ViT which requires huge dataset in order to converge. Experimentally, these techniques proved to have a positive impact on the performance of the ViT, which reached 96.85% accuracy when SPT and LSA are employed. Show more
Keywords: Image recognition, house classification, vision transformer, ViT, shifted patch tokenization, locality self-attention
DOI: 10.3233/JIFS-230972
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Bai, Hao | Wang, Wubin | Tang, Hao | Li, Xin | Zhao, Yinting | Lv, Dongqin
Article Type: Research Article
Abstract: This study utilized several coupled approaches to create powerful algorithms for forecasting the compressive strength (C s ) of concretes that include metakaolin (MK ) and fly ash (FA ). For this purpose, three various methods were considered, named random forests (RF ), Categorical boosting model (CB ), and extreme gradient boosting (XGB ) by considering the seven most influential input variables. It was tried to divide the concrete components to binder value (B ) to achieve the non-dimensional input variables. Herein, the cutting-edge Tasmanian devil Optimization (TDO ) algorithm was linked with RF , XGB , and CB …for the purpose of determining the optimal values of hyperparameters (named TD - CB , TD - RF , and TD - XG ). It is worth mentioning that developing the mentioned algorithms optimized with TD to estimate the mechanical properties of the concrete containing several important admixtures can be recognized as this study’s contribution to practical applications. The findings indicate that the algorithms possess a notable capacity to precisely forecast the C s of concrete, which includes MK and FA , with R 2 bigger than roughly 0.97. The lower value of OBJ comprehensive index belonged to the TD - CB at 1.5762, followed by TD - XG at 1.9943 and then 2.3317 related to TD - RF with almost 70% reduction. The sensitivity analysis demonstrated that the prediction of C s is highly influenced by all input parameters, which are higher than 0.8659, but a higher influence from MK /B at 0.9548. Show more
Keywords: Modified concrete, metakaolin, fly ash, unary and binary mix, estimation, categorical boosting
DOI: 10.3233/JIFS-242189
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Atef, Shimaa | El-Seidy, Essam | Abd El-Salam, Salsabeel M.
Article Type: Research Article
Abstract: Relatedness is necessary and causal in the development of social life. Interlayer relatedness is a measure of how one player’s decisions affect the decisions of other players in the game. The relatedness can be positive or negative. We had to determine how effective each strategy was under specific conditions, and how the correlation between players affected their payoffs. In this paper, we analytically study the strategies that enforce linear payoff relationships in the Iterated Prisoner’s Dilemma (IPD) game considering both a relatedness factor. As a result, we first reveal that the payoffs of two players and three players can be …represented by the form of determinants as shown by Press and Dyson even with the factor. Show more
Keywords: Equalizer, iterated prisoner’s dilemma (IPD), relatedness, two-player, three-player, zero-determinant strategies (ZD)
DOI: 10.3233/JIFS-239406
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Pethaperumal, Mahalakshmi | Jayakumar, Vimala | Edalatpanah, Seyyed Ahmed | Mohideen, Ashma Banu Kather | Annamalai, Surya
Article Type: Research Article
Abstract: The global healthcare systems have encountered unparalleled difficulties due to the COVID-19 pandemic, underscoring the crucial significance of effective management within healthcare supply chains. This research contributes to the field of healthcare supply chain management by presenting a robust MADM methodology called lattice ordered(Lq * ) q-rung orthopair multi-fuzzy soft set(Lq * q-ROMFS -MADM) for supplier evaluation and ranking amidst the challenges posed by the COVID-19 pandemic. Taking inspiration from multi-fuzzy soft set and q-rung orthopair fuzzy set, the present research article proposes a novel framework known as Lq * q-rung orthopair multi-fuzzy soft …set (Lq * qROMFSS ), which incorporates lattice ordering in q-rung orthopair multi-fuzzy soft set. The effectiveness of the proposed model is confirmed through successful experimentation on various important operations, including union, intersection, complement, restricted union and intersection. Moreover, the verification of De Morgan’s laws for Lq * qROMFSS is carried out specifically for these operations mentioned above. To highlight the significance of the proposed Lq * qROMFSS , a multi-attribute decision-making (MADM) problem is presented, showcasing its application in the domain of healthcare supply chain management. Furthermore, a comparative analysis is conducted to elucidate the advantages of this model in comparison to existing models. Show more
Keywords: Lattice ordered multi-fuzzy soft set, q-rung orthopair multi-fuzzy soft set, Lq* q-rung orthopair multi-fuzzy soft set, supplier selection, multi-attribute decision-making
DOI: 10.3233/JIFS-219411
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Annamalai, Surya | Jayakumar, Vimala
Article Type: Research Article
Abstract: The Hypersoft set (HSS) theory was created by extending the soft set (SS) theory. The q-Rung linear diophantine fuzzy set (q-RLDFS) is a major development in fuzzy set theory (FS). By fusing q-RLDFS with HSS, the concept of q-rung linear diophantine fuzzy hypersoft set (q-RLDFHSS) is presented in this study. This study also discusses the concepts of lattice ordered q-RLDFHSS (LOq-RLDFHSS) and LOq-RLDFHS Matrix (LOq-RLDFHSM) as well as some standard operations of LOq-RLDFHSM. A medical diagnosis methodology based on LOq-RLDFHSM is proposed to evaluate multi-sub-attributed medical diagnosis difficulties incredibly well along with a diagnosis problem based on patients with comorbidities. …Further, between the proposed and current theories, comparison analysis and discussion have been given in this study. Show more
Keywords: q-Rung linear diophantine fuzzy set (q-RLDFS), hypersoft set(HSS), lattice, medical diagnosis
DOI: 10.3233/JIFS-219414
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Amrutha Raj, V. | Malu, G.
Article Type: Research Article
Abstract: Deep learning has gained popularity across several industries, including object recognition and classification. In the case of Convolutional Neural Networks (CNN), the first layers extract the most noticeable elements, such as shape and margin. As the model progresses, it learns to extract more complex features such as texture and color; conversely, skeleton features encompass significant locations (joints) that do not naturally align with the grid-like architecture intended for these networks. This study emphasizes the importance of structural features in enhancing the performance of deep learning models. It introduces the Gesture Analysis Module Network (GAMNet), which computes abstract structural values within …the architecture for feature extraction, prioritization, and classification. These values go through a rigorous evaluation process along with the cutting-edge deep learning model, CNN, and result in intermediate representations, leading to better performance in gesture analysis. An automated dance gesture identification system can address the challenges of recognizing hand movements in unpredictable lighting, varied backgrounds, noise, and changing camera angles. Despite these challenges, GAMNet performed remarkably well, surpassing renowned models like VGGNet, ResNet, EfficientNet, and CNN, achieving a classification accuracy of 96.80%, even in challenging image circumstances. This paper highlights how GAMNet can revolutionize the world of classical Indian dance, opening up new opportunities for research and development in this field. Show more
Keywords: Data augmentation, deep architecture, gesture recognition, structural features, skeleton, convolutional neural network
DOI: 10.3233/JIFS-219395
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Rong, Mansong | Wei, Yuan | Xiao, Zhijun | Peng, Hongchong | Schröder, Kai-Uwe
Article Type: Research Article
Abstract: In order to improve the identification accuracy of bearing fault diagnosis, overcome the training difficulties and poor generalization ability of fault diagnosis model under the condition of small samples, this work constructs the LSTM-GAN model by combining long short-term memory network (LSTM) with generative adductive neural network (GAN). Firstly, LSTM is used to build a generator to generate adversarial neural network model, and the feature extraction capability of LSTM is adopted to improve the quality of generated samples. Then, the convolutional neural network (CNN) is improved to enhance its classification ability, and the improved CNN is used to classify faults. …Finally, CNN and convolutional autoencoder (CAE) are used to diagnose bearing faults under different working conditions to enhance the diagnostic effect of the model under different working conditions. The results show that LSTM-GAN can capture the feature information in the original data well, and the generated samples can improve the diagnosis accuracy of bearing fault diagnosis under the condition of small samples. The diagnostic model still has high accuracy under different working conditions, which provides support for the research and application of bearing fault diagnosis. Show more
Keywords: Fault diagnosis, data enhancement, variable working conditions, deep learning
DOI: 10.3233/JIFS-240105
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Zhang, Hongling | Zhang, Hongzhi
Article Type: Research Article
Abstract: The qualities of the materials employed to manufacture concrete are significantly impacted by high temperatures, which results in a noticeable decrease in the material’s strength characteristics. Concrete must be worked very hard and allowed to reach the required compressive strength (f c ). Nevertheless, a preliminary estimation of the desired outcome may be made with an outstanding degree of reliability by using supervised machine learning algorithms. The study combined the Dingo optimization algorithm (DOA), Coot bird optimization (COA), and Artificial rabbit optimization (ARO) with Random Forests (RF) evaluation to determine the f c of concrete at high …temperatures. The abbreviations used for the combined methods are RFD, RFC, and RFA, respectively. Remarkably, removing the temperature (T ) parameter from the input set leads to a remarkable 1100% improvement in the effectiveness index (PI) and normalized root mean squared error (NRMSE), while causing a significant fall in the coefficient of determination (R 2 ). The findings suggest that all RFD, RFC, and RFA have substantial promise in properly forecasting the f c of concrete at high temperatures. More precisely, the RFD algorithm demonstrated exceptional precision with R 2 values of 0.9885 and 0.9873 throughout the training and testing stages, respectively. Through a comparison of the error percentages for RFD, RFC, and RFA in error-based measurements, it becomes evident that RFD exhibits an error rate that is about 50% smaller compared to that of RFC and RFA. This prediction is crucial for various industries and applications where concrete structures are subjected to elevated temperatures, such as in fire resistance assessments for buildings, tunnels, bridges, and other infrastructure. By accurately forecasting the compressive strength of concrete under these conditions, engineers and designers can make informed decisions regarding the material’s suitability and performance in high-temperature environments, leading to enhanced safety, durability, and cost-effectiveness of structures. Show more
Keywords: Concrete, elevated temperature, strength, random forests, Dingo optimization algorithm, sensitivity analysis
DOI: 10.3233/JIFS-240513
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: John, Manu | Mathew, Terry Jacob | Bindu, V.R.
Article Type: Research Article
Abstract: Content-Based Image Retrieval (CBIR) is a technique that involves retrieving similar images from a large database by analysing the content features of the query image. The heavy usage of digital platforms and devices has in a way promoted CBIR and its allied technologies in computer vision and artificial intelligence. The process entails comparing the representative features of the query image with those of the images in the dataset to rank them for retrieval. Past research was centered around handcrafted feature descriptors based on traditional visual features. But with the advent of deep learning the traditional manual method of feature engineering …gave way to automatic feature extraction. In this study, a cascaded network is utilised for CBIR. In the first stage, the model employs multi-modal features from variational autoencoders and super-pixelated image characteristics to narrow down the search space. In the subsequent stage, an end-to-end deep learning network known as a Convolutional Siamese Neural Network (CSNN) is used. The concept of pseudo-labeling is incorporated to categorise images according to their affinity and similarity with the query image. Using this pseudo-supervised learning approach, this network evaluates the similarity between a query image and available image samples. The Siamese network assigns a similarity score to each target image, and those that surpass a predefined threshold are ranked and retrieved. The suggested CBIR system undergoes testing on a widely recognized public dataset: the Oxford dataset and its performance is measured against cutting-edge image retrieval methods. The findings reveal substantial enhancements in retrieval performance in terms of several standard benchmarks such as average precision, average error rate, average false positive rate etc., providing strong support for utilising images from interconnected devices. Show more
Keywords: CBIR, siamese neural networks, deep learning, computer vision, clustering
DOI: 10.3233/JIFS-219396
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Kather Mohideen, Ashma Banu | Jayakumar, Vimala | Pethaperumal, Mahalakshmi | Kannan, Jeevitha
Article Type: Research Article
Abstract: As the globe enters a new era, web applications will become indispensable to managing business. Businesses can easily grow, become simpler, and accomplish their objective much faster by employing web applications. Creating a web application in cloud computing allows for the more affordable leveraging of cloud-based services. This makes it easier to avoid setting up and maintaining several servers. To get around cloud computing’s built-in restrictions such as scalability, security, and bandwidth limitations, the future smart world of cloud computing will be coupled with LiFi connectivity. Beyond creating the web application, it is important to promote this web application among …the network of users as quickly and effectively as possible. This manuscript proposes a strategy to address these challenges. There are two primary components to this MCDM technique. The first step is to model the problem as a graph and weigh the edges by employing the Hamacher aggregation operator. The second step involves using a fresh iteration of Kruskal’s technique in conjunction with this approach to discover a Minimum Spanning Tree as a resolution. This manuscript adds to the literature by solving real-world Minimum Spanning Tree problems by combining existing algorithms with MCDM techniques. This technique is demonstrated for marketing a web application(created via cloud service) in a future smart world using LiFi technology. Show more
Keywords: Cloud computing, LiFi technology, Kruskal’s technique, minimum spanning tree, Hamacher aggregation operator
DOI: 10.3233/JIFS-219423
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Jenefa, A. | Taurshia, Antony | Edward Naveen, V. | Kuriakose, Bessy M. | Thiyagu, T.M.
Article Type: Research Article
Abstract: In the realm of digital imaging, enhancing low-resolution images to high-definition quality is a pivotal challenge, particularly crucial for applications in medical imaging, security, and remote sensing. Traditional methods, primarily relying on basic interpolation techniques, often result in images that lack detail and fidelity. GANSharp introduces an innovative GAN-based framework that substantially improves the generator network, incorporating adversarial and perceptual loss functions for enhanced image reconstruction. The core issue addressed is the loss of critical information during down-sampling processes. To counteract this, we proposed a GAN-based method leveraging deep learning algorithms, trained using sets of both low- and high-resolution images. …Our approach, which focuses on expanding the generator network’s size and depth and integrating adversarial and perceptual loss, was thoroughly evaluated on various benchmark datasets. The experimental results showed remarkable outcomes. On the Set5 dataset, our method achieved a PSNR of 34.18 dB and a SSIM of 0.956. Comparatively, on the Set14 dataset, it yielded a PSNR of 31.16 dB and an SSIM of 0.920, and on the B100 dataset, it achieved a PSNR of 30.51 dB and an SSIM of 0.912. These results were superior or comparable to those of existing advanced algorithms, demonstrating the proposed method’s potential in generating high-quality, high-resolution images. Our research underscores the potency of GANs in image super-resolution, making it a promising tool for applications spanning medical diagnostics, security systems, and remote sensing. Future exploration could extend to the utilization of alternative loss functions and novel training techniques, aiming to further refine the efficacy of GAN-based image restoration algorithms. Show more
Keywords: Adversarial network training, enhanced image generation, image refinement, advanced neural architecture, improved resolution, quality assessment metrics, structural similarity evaluation
DOI: 10.3233/JIFS-238597
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
Authors: Wang, Tianxing | Huang, Bing
Article Type: Research Article
Abstract: This paper makes a significant contribution to the field of conflict analysis by introducing a novel Interval-Valued Intuitionistic Fuzzy Three-Way Conflict Analysis (IVIFTWCA) method, which is anchored in cumulative prospect theory. The method’s key innovation lies in its use of interval-valued intuitionistic fuzzy numbers to represent an agent’s stance, addressing the psychological dimensions and risk tendencies of decision-makers that have been largely overlooked in previous studies. The IVIFTWCA method categorizes conflict situations into affirmative, impartial, and adverse coalitions, leveraging the evaluation of the closeness function and predefined thresholds. It incorporates a reference point, value functions and cumulative weight functions to …assess risk preferences, leading to the formulation of precise decision rules and thresholds. The method’s efficacy and applicability are demonstrated through detailed examples and comparative analysis, and its exceptional performance is confirmed through a series of experiments, offering a robust framework for real-world decision-making in conflict situations. Show more
Keywords: Three-way decision, conflict analysis, interval-valued intuitionistic fuzzy sets, cumulative prospect theory
DOI: 10.3233/JIFS-238873
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Pethaperumal, Mahalakshmi | Jayakumar, Vimala | Kannan, Jeevitha | Shanmugam, Nithya Sri
Article Type: Research Article
Abstract: The global challenges associated with urbanization and the escalating waste production have been magnified in recent times, particularly in the context of the COVID-19 pandemic. In response to these challenges, municipal authorities, especially in developing nations, are confronted with the imperative task of discerning the most suitable healthcare waste (HCW) disposal methods. These methods are crucial for the effective management of medical waste, both during and after the COVID-19 era. This study introduces a novel similarity measure designed for lattice ordered q-rung orthopair multi-fuzzy soft sets (Lq * q-ROMn FSSs) and exploring some of their essential characteristics. Currently, …no established methods are available for gauging the similarity of Lq * q-ROMn FSSs sets. Therefore, this paper takes a pioneering step by presenting similarity measures tailored for Lq * q-ROMn FSSs sets. Moreover, we propose an evaluation methodology that leverages the lattice ordered q-rung orthopair multi-fuzzy soft information to determine the optimal health care waste (HCW) disposal approach. This approach seeks to enhance decision-making within the realm of waste management, facilitating more informed and effective choices in handling healthcare waste. Show more
Keywords: Multi-fuzzy soft set, Lq* q-rung orthopair multi-fuzzy soft set, Lq* q-ROMnFS matrix, Lq* q-ROMnFS similarity measures, healthcare waste disposal technique
DOI: 10.3233/JIFS-219412
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Thirugnanasammandamoorthi, Puviyarasi | Kumar, Harsh | Ghosh, Debabrata | Dhasarathan, Chandramohan | Dewangan, Ram Kishan
Article Type: Research Article
Abstract: Sentiment analysis is a method of analyzing emotions and using text analysis techniques with natural language processing methods. Sentiment analysis uses data from various sources to identify the user’s attitude through different aspects. It is widely used for extracting opinions and recognizing sentiments, which helps Business organizations understand the user’s needs. This paper proposes a simple but compelling sentiment analysis method, showing the combined scores based on positive and negative words. Then, the tweets are categorized as Neutral, Negative, or Positive according to the scores. Sentiment analysis and opinion mining have grown significantly in the last decade. Different studies in …this domain try to determine people’s feelings, opinions, and emotions about something or someone. The main objective of this analysis is to determine the sentiment of the review using a machine learning model and then compare the result with the manual review of the data. This would allow researchers to represent and analyze opinions objectively across different domains. A hybrid method that combines a supervised machine learning algorithm with natural language processing techniques is suggested for review analysis. This project aims to find the best model to predict the sentiment of the tweets on airlines. During the research process and considering various methods and variables that should be considered, we found that methods like naïve Bayes and random forest were not fully explored. The proposed system improves an effective and more feasible method for sentimental analysis using machine learning, multinomialNB, linear regression, and regular expression. Show more
Keywords: Sentiment analysis, machine learning, regular expression, multinomialNB, public sentiments, social media analysis
DOI: 10.3233/JIFS-219417
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Hossain, AKM B. | Salam, Md. Sah Bin Hj. | Alam, Muhammad S. | Hossain, AKM Bellal
Article Type: Research Article
Abstract: Semantic segmentation is crucial for the treatment and prevention of brain cancers. Several neural network–based strategies were rapidly presented by research groups to enhance brain tumor thread segmentation. The tumor’s uneven form necessitates the usage of neural networks for its detection. Therefore, improved patient outcomes may be achieved with precise segmentation of brain tumor. Brain tumors can range widely in size, form, and position, making diagnosis difficult. Thus, this work offers a Multi-level U-Net (MU-Net) approach for analyzing the brain tumor data augmentation for improved segmentation. Therefore, a significant amount of data augmentation is employed to successfully train the recommended …system, removing the problem of a lack of data when using MR images for the diagnosis of multi-grade brain cancers. Here, we presented the “Multi-Level Pyramidal Pooling (MLPP)” component, where a new pyramidal pool will be employed to capture contextual data for augmentation. The “High-Grade Glioma” (HGG) datasets from the Kaggle and BraTs2021 were used to assess the proposed MU-Net. Overall Tumor (OT), Enhancing Core (EC), and Tumor Core (TC) were the three main designations to be segmented. The dice score was used to contrast the results empirically. The suggested MU-Net fared better than most existing methods. Researchers in the fields of bioinformatics and medicine might greatly benefit from the high-performance MU-Net. Show more
Keywords: Brain tumor, Data Augmentation (DA), Multi-level U-Net (MU-Net), Multi-Level Pyramidal Pooling (MLPP), Adaptive Curvelet Transform (ACT), wavelet threshold
DOI: 10.3233/JIFS-232782
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Authors: Mahendran, S. | Gomathy, B.
Article Type: Research Article
Abstract: This study addresses the escalating energy demands faced by global industries, exerting pressure on power grids to maintain equilibrium between supply and demand. Smart grids play a pivotal role in achieving this balance by facilitating bidirectional energy flow between end users and utilities. Unlike traditional grids, smart grids incorporate advanced sensors and controls to mitigate peak loads and balance overall energy consumption. The proposed work introduces an innovative deep learning strategy utilizing bi-directional Long Short Term Memory (b-LSTM) and advanced decomposition algorithms for processing and analyzing smart grid sensor data. The application of b-LSTM and higher-order decomposition in the analysis …of time-series data results in a reduction of Mean Absolute Percentage Error (MAPE) and Minimal Root Mean Square (RMSE). Experimental outcomes, compared with current methodologies, demonstrate the model’s superior performance, particularly evident in a case study focusing on hourly PV cell energy patterns. The findings underscore the efficacy of the proposed model in providing more accurate predictions, thereby contributing to enhanced management of power grid challenges. Show more
Keywords: Smart grids, deep learning, PV cells, error rate and absolute error, prediction
DOI: 10.3233/JIFS-238850
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Thampi, Sabu M. | El-Alfy, El-Sayed M. | Berretti, Stefano
Article Type: Editorial
DOI: 10.3233/JIFS-219381
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-9, 2024
Authors: Xu, Zhigang | Li, Yugen
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-236385
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-241838
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
Authors: Luo, Long
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-239704
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
Authors: Du, Xueke | Li, Wenli | Wei, Xiaowen
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-234621
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-20, 2024
Authors: Srinivasan, Manohar | Senthilkumar, N.C.
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-240571
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-11, 2024
Authors: Liu, Dapeng
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-237214
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
Authors: Huang, Jinsong | Hou, Hecheng | Li, Xiaoying | Zhang, Ziyi | Jia, Qi
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-237212
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-18, 2024
Authors: Jansi Sophia Mary, C. | Mahalakshmi, K.
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-237900
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
Authors: Ratha, Ashoka Kumar | Behera, Santi Kumari | Devi, A. Geetha | Barpanda, Nalini Kanta | Sethy, Prabira Kumar
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-239875
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
Authors: Manju, S.C. | Swarnajyothi, K. | Geetha, J. | Somasundaram, K.
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-238204
Citation: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]