Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Valencia-Valencia, Alex I.a; * | Gomez-Adorno, Helenab | Stephens Rhodes, Christopherc | Bel-Enguix, Gemmad; e | Trueba, Ojedad | Fuentes Pineda, Gibranb
Affiliations: [a] Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de México | [b] Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México | [c] Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México | [d] Instituto de Ingeniería, Universidad Nacional Autónoma de México | [e] Departament de Filologia Catalana i Lingüística General, Universitat de Barcelona
Correspondence: [*] Corresponding author. Alex I. Valencia-Valencia, Posgrado en Ciencia e Ingenierıa de la Computación, UNAM. E-mail: [email protected].
Abstract: Social media platforms, such as Twitter (now X), are a major source of communication. Identifying communicative intentions is useful, as it encapsulates the latent motivations that drive text creation. This intention is also helpful in understanding the message, context, and audience. This study proposes a method for detecting communicative intentions in tweets using Jakobson’s language functions. We constructed a meticulously annotated dataset, drawing from the extensive RepLab2013 corpus. Our dataset underwent rigorous scrutiny by linguistic annotators who analyzed over 12,000 tweets individually. These experts identified the dominant language function within each tweet by employing diverse strategies to ensure precise labeling quality. The outcome demonstrated a noteworthy Kappa agreement score of 0.6, reflecting a strong inter-annotator reliability. Subsequently, these functions were mapped to the corresponding intention categories. We employed logistic regression and support vector machines (SVM) algorithms to classify intention in tweets and explored various pre-processing techniques, incorporating n-grams and bag-of-words representations. Furthermore, we expanded our research using pre-trained large language models, incorporating the latest state-of-the-art techniques in natural language processing.
Keywords: Intention, communicative intention, tweets, language functions, intention identification, n-grams, logistic regression, SVM, deep learning
DOI: 10.3233/JIFS-219357
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-14, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]