Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Haennah, J.H. Jenshaa; * | Christopher, C. Seldevb | King, G.R. Gnanac
Affiliations: [a] Research Scholar St.Xavier’s Catholic College of Engineering Tamil Nadu, India | [b] St.Xavier’s Catholic College of Engineering Tamil Nadu, India | [c] Sahrdaya College of Engineering and Technology Kerala, India
Correspondence: [*] Corresponding author. J.H. Jensha Haennah, Research Scholar St.Xavier’s Catholic College of Engineering Tamil Nadu, India. E-mail: [email protected].
Abstract: Accurate SARS-CoV-2 screening is made possible by automated Computer-Aided Diagnosis (CAD) which reduces the stress on healthcare systems. Since Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is highly contagious, the transition chain can be broken through an early diagnosis by clinical knowledge and Artificial Intelligence (AI). Manual findings are time and labor-intensive. Even if Reverse Transcription-Polymerase Chain Reaction (RT-PCR) delivers quick findings, Chest X-ray (CXR) imaging is still a more trustworthy tool for disease classification and assessment. Several studies have been conducted using Deep Learning (DL) algorithms for COVID-19 detection. One of the biggest challenges in modernizing healthcare is extracting useful data from high-dimensional, heterogeneous, and complex biological data. Intending to introduce an automated COVID-19 diagnosis model, this paper develops a proficient optimization model that enhances the classification performance with better accuracy. The input images are initially pre-processed with an image filtering approach for noise removal and data augmentation to extend the dataset. Secondly, the images are segmented via U-Net and are given to classification using the Fused U-Net Convolutional Neural Network (FUCNN) model. Here, the performance of U-Net is enhanced through the modified Moth Flame Optimization (MFO) algorithm named Chaotic System-based MFO (CSMFO) by optimizing the weights of U-Net. The significance of the implemented model is confirmed over a comparative evaluation with the state-of-the-art models. Specifically, the proposed CSMFO-FUCNN attained 98.45% of accuracy, 98.63% of sensitivity, 98.98% of specificity, and 98.98% of precision.
Keywords: COVID-19 classification, deep Learning, U-Net, Convolutional Neural Network (CNN), Moth Flame Optimization (MFO)
DOI: 10.3233/JIFS-230523
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-17, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]