Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Saravanan, Krithikha Sanju; * | Bhagavathiappan, Velammal
Affiliations: Department of Computer Science and Engineering, College of Engineering, Guindy, Anna University, Chennai, India
Correspondence: [*] Corresponding author. Krithikha Sanju Saravanan. E-mail: [email protected].
Abstract: The advancements in technology, particularly in the field of Natural Language Processing (NLP) and Artificial Intelligence (AI) can be advantageous for the agricultural sector to enhance the yield. Establishing an agricultural ontology as part of the development would spur the expansion of cross-domain agriculture. Semantic and syntactic knowledge of the domain data is required for building such a domain-based ontology. To process the data from text documents, a standard technique with syntactic and semantic features are needed because the availability of pre-determined agricultural domain-based data is insufficient. In this research work, an Agricultural Ontologies Construction framework (AOC) is proposed for creating the agricultural domain ontology from text documents using NLP techniques with Robustly Optimized BERT Approach (RoBERTa) model and Graph Convolutional Network (GCN). The anaphora present in the documents are resolved to produce precise ontology from the input data. In the proposed AOC work, the domain terms are extracted using the RoBERTa model with Regular Expressions (RE) and the relationships between the domain terms are retrieved by utilizing the GCN with RE. When compared to other current systems, the efficacy of the proposed AOC method achieves an exceptional result, with precision and recall of 99.6% and 99.1% respectively.
Keywords: Anaphora resolution, term extraction, relationships identification, RoBERTa model, regular expressions, graph convolutional network, domain ontology
DOI: 10.3233/JIFS-237632
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-19, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]