Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rao, Vishisht Srihari; * | Vinay, P. | Uma, D.
Affiliations: Department of Computer Science and Engineering, PES University, Bengaluru, India
Correspondence: [*] Corresponding author. Vishisht Srihari Rao. E-mail: [email protected].
Abstract: A hazy image is characterized by atmospheric conditions that reduce the image’s clarity and contrast, thereby making it less visible. This degradation in image quality can hinder the performance of advanced computer vision tasks such as object detection and identifying open spaces which need to perform with high accuracy in important real world applications such as security surveillance and autonomous driving. In the recent past, the use of deep learning in image processing tasks have shown a remarkable improvement in performance, in particular, Convolutional Neural Networks (CNNs) perform superior to any other type of neural network in image related tasks. In this paper, we propose the addition of Channel Attention and Pixel Attention layers to four state-of-the-art CNNs, namely, GMAN, U-Net, 123-CEDH and DMPHN, used for the task of image dehazing. We show that the addition of these layers yields a non-trivial improvement on the quality of the dehazed images which we show qualitatively with examples and quantitatively by obtaining PSNR and SSIM scores of 28.63 and 0.959 respectively. Through the experiments, we show that the addition of the mentioned attention layers to the GMAN architecture yields the best results.
Keywords: Dehazing, deep neural network, convolutional neural network, attention
DOI: 10.3233/JIFS-219391
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]