Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kolesnikova, Olga; † | Yigezu, Mesay Gemeda†; ; * | Gelbukh, Alexander | Abitte, Selam | Sidorov, Grigori
Affiliations: Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
Correspondence: [*] Corresponding author. Mesay Gemeda Yigezu. E-mail: [email protected].
Note: [†] These authors contributed equally to this work.
Abstract: Twitter has experienced a tremendous surge in popularity over recent years, establishing itself as a prominent social media platform with a large user base. However, with this increased usage, there has been a concerning rise in the number of individuals resorting to derogatory language and expressing their opinions in a demeaning manner toward others. This surge in hate speech has drawn significant attention to the field of sentiment analysis, which aims to develop algorithms capable of detecting and analyzing emotions expressed in social networks using intuitive approaches. This paper focuses on addressing the complex task of detecting hate speech and aggressive behavior while performing target classification. We explored various deep-learning approaches, including LSTM, BiLSTM, CNN, and GRU. Each offers unique capabilities for capturing different aspects of the input data. We proposed an ensemble approach that combines the top three performing models. This ensemble approach benefits from the diverse strengths of each individual model showing F1 score of 0.85 for English-HS, 0.94 for English-TR, 0.92 for English-AB, 0.84 for Spanish-HS, 0.86 for Spanish-TR, 0.97 for Spanish-AB, 0.74 for multilingual-HS, 0.94 for multilingual-TR, and 0.88 for multilingual-AB.
Keywords: Hate speech, aggressive behavior, target classification, ensemble learning, deep learning, target classification
DOI: 10.3233/JIFS-219350
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-10, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]