Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gao, Lijun | Liu, Kai; * | Liu, Wenjun | Wu, Jiehong | Jin, Xiao
Affiliations: Department of Computer Science, Shenyang Aerospace University, Shenyang, Liaoning, China
Correspondence: [*] Corresponding author. Kai Liu, Department of Computer Science, Shenyang Aerospace University, Shenyang 110136, Liaoning, China. E-mail: [email protected].
Abstract: As machine learning models become increasingly integrated into practical applications and are made accessible via public APIs, the risk of model extraction attacks has gained prominence. This study presents an innovative and efficient approach to model extraction attacks, aimed at reducing query costs and enhancing attack effectiveness. The method begins by leveraging a pre-trained model to identify high-confidence samples from unlabeled datasets. It then employs unsupervised contrastive learning to thoroughly dissect the structural nuances of these samples, constructing a dataset of high quality that precisely mirrors a variety of features. A mixed information confidence strategy is employed to refine the query set, effectively probing the decision boundaries of the target model. By integrating consistency regularization and pseudo-labeling techniques, reliance on authentic labels is minimized, thus improving the feature extraction capabilities and predictive precision of the surrogate models. Evaluation on four major datasets reveals that the models crafted through this method bear a close functional resemblance to the original models, with a real-world API test success rate of 62.35%, which vouches for the method’s validity.
Keywords: Model extraction, unsupervised learning, selection of strategies, active learning
DOI: 10.3233/JIFS-239504
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-16, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]