Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Xu, Liwen; * | Chen, Jiali; *
Affiliations: College of Science, North China University of Technology, Beijing, China
Correspondence: [*] Corresponding author. Liwen Xu. E-mail: [email protected] and Jiali Chen. E-mail: [email protected].
Abstract: Node classification in graph learning faces significant challenges due to imbalanced data, particularly for under-represented samples from minority classes. To address this issue, existing methods often rely on synthetic minority over-sampling techniques, introducing additional complexity during model training. In light of the challenges faced, we introduce GraphECC, an innovative approach that addresses numerical anomalies in large-scale datasets by supplanting the traditional CE loss function with an Enhanced Complementary Classifier (ECC) loss function’a novel modification to the CCE loss. This alteration ensures computational stability and mitigates potential numerical anomalies by incorporating a slight offset in the denominator during the computation of the complementary probability distribution. In this paper, we present a novel training paradigm, the Enhanced Complementary Classifier (ECC), which offers “imbalance defense for free” without the need for extra procedures to improve node classification accuracy.The ECC approach optimizes model probabilities for the ground-truth class, akin to the cross-entropy method. Additionally, it effectively neutralizes probabilities associated with incorrect classes through a “guided” term, achieving a balanced trade-off between the two aspects. Experimental results demonstrate that our proposed method not only enhances model robustness but also surpasses the widely used cross-entropy training objective.Moreover, we demonstrate the versatility of our method by seamlessly integrating it with various well-known adversarial training techniques, resulting in significant gains in robustness. Notably, our approach represents a breakthrough, as it enhances model robustness without compromising performance, distinguishing it from previous attempts.The code for GraphECC can be accessed from the following link:https://github.com/12chen20/GraphECC.
Keywords: Imbalanced node classification, trade-off optimization, enhanced complementary classifier (ECC), graph learning, minority classes
DOI: 10.3233/JIFS-239663
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-13, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]