Analog front-end measuring biopotential signal with effective offset rejection loop
This paper presents an analog front-end (AFE) IC design for recording biopotential signals. The AFE employs a capacitively coupled instrumentation amplifier to achieve a low-noise and high-common mode rejection ratio (CMRR) system. A ripple reduction loop is proposed to reduce the ripple generated by the up-modulating chopper. The low frequency noise is attenuated by an input AC coupling capacitor, and is attenuated again by a DC servo loop. The proposed AFE features a differential gain of 71 dB, and a CMRR of 89 dB, at 50 Hz. Furthermore, the proposed AFE can robustly acquire biopotential signals even in the presence of an input offset and ripples.