Bio-Medical Materials and Engineering - Volume 35, issue 5
Purchase individual online access for 1 year to this journal.
Price: EUR 245.00
Impact Factor 2024: 1.0
The aim of
Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems.
Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
Abstract: BACKGROUND: Tissue engineering seeks to improve, maintain, or replace the biological functions of damaged organs or tissues with biological substitutes such as the development of scaffolds. In the case of bone tissue, they must have excellent mechanical properties like native bone. OBJECTIVE: In this work, three geometric models were designed for scaffolds with different structure lattices and porosity that could be biomechanically suitable and support cell growth for trabecular bone replacement applications in tissue engineering and regenerative medicine to the proximal femur area. METHODS: Geometries were designed using computer-aided design (CAD) software and evaluated using finite…element analysis in compression tests. Three loads were considered according to the daily activity: 1177 N for slow walking, 2060 N for fast walking, and 245.25 N for a person in a bipedal position. All these loads for an adult weight of 75 kg. For each of them, three biomaterials were assigned: two polymers (poly-glycolic acid (PGA) and poly-lactic acid (PLA)) and one mineral (hydroxyapatite (HA)). 54 tests were performed: 27 for each of the tests. RESULTS: The results showed Young’s modulus (E) between 1 and 4 GPa. CONCLUSION: If the resultant E is in the range of 0.1 to 5 GPa, the biomaterial is considered an appropriate alternative for the trabecular bone which is the main component of the proximal bone. However, for the models applied in this study, the best option is the poly-lactic acid which will allow absorbing the acting loads.
Show more
Abstract: BACKGROUND: Systemic-to-pulmonary shunt is a palliative procedure used to decrease pulmonary blood flow in congenital heart diseases. Shunt stenosis or occlusion has been reported to be associated with mortality; therefore, the management of thrombotic complications remains a challenge for most congenital cardiovascular surgeons. Despite its importance, the optimal method for shunt anastomosis remains unclear. OBJECTIVE: The study investigates the clinical benefits of the punch-out technique over conventional methods in the anastomosis process of Systemic-to-pulmonary shunt, focusing on its potential to reduce shunt-related complications. METHODS: Anastomotic models were created by two different surgeons employing both traditional slit…and innovative punch-out techniques. Computational tomography was performed to construct three-dimensional models for computational fluid dynamics (CFD) analysis. We assessed the flow pattern, helicity, magnitude of wall shear stress, and its gradient. RESULTS: The anastomotic flow area was larger in the model using the punch-out technique than in the slit model. In CFD simulation, we found that using the punch-out technique decreases the likelihood of establishing a high wall shear stress distribution around the anastomosis line in the model. CONCLUSION: The punch-out technique emerges as a promising method in SPS anastomosis, offering a reproducible and less skill-dependent alternative that potentially diminishes the risk of shunt occlusion, thereby enhancing patient outcomes.
Show more
Abstract: BACKGROUND: Inertial measurement unit (IMU)-based motion sensors are affordable, and their use is appropriate for rehabilitation. However, regarding the accuracy of estimated angle information obtained from this sensor, it is reported that it is likely affected by velocity. OBJECTIVE: The present study investigated the reliability and validity of the angle information obtained using IMU-based sensors compared with a three-dimensional (3D) motion analyzer. METHODS: The Euler angle obtained using the 3D motion analyzer and the angle obtained using the IMU-based sensor (IMU angle) were compared. Reliability was assessed by comparing the Bland–Altman analysis, intra-class correlation coefficient (ICC)…(1,1), and cross-correlation function. The root mean square (RMS) error, ICC (2,1), and cross-correlation function were used to compare data on the Euler and IMU angles to evaluate the validity. RESULTS: Regarding reliability, the Bland–Atman analysis indicated no fixed or proportional bias in the angle measurements. The measurement errors ranged from 0.2° to 3.2°. In the validity, the RMS error ranged from 0.3° to 2.2°. The ICCs (2,1) were 0.9. The cross-correlation functions were >0.9, which indicated a high degree of agreement. CONCLUSION: The IMU-based sensor had a high reliability and validity. The IMU angle may be used in rehabilitation.
Show more
Abstract: BACKGROUND: The emergence of the global problem of multi-drug resistant bacteria (MDR) is closely related to the improper use of antibiotics, which gives birth to an urgent need for antimicrobial innovation in the medical and health field. Silver nanoparticles (AgNPs) show significant antibacterial potential because of their unique physical and chemical properties. By accurately regulating the morphology, size and surface properties of AgNPs, the antibacterial properties of AgNPs can be effectively enhanced and become a next generation antibacterial material with great development potential. OBJECTIVE: The detection of the inhibitory effect of AgNPs on MDR provides more possibilities for…the research and development of new antimicrobial agents. METHODS: Promote the formation of AgNPs by redox reaction; determine the minimum inhibitory concentration (MIC) of AgNPs to bacteria by broth microdilution method; evaluate the killing efficacy of AgNPs against multi-drug-resistant bacteria by plate counting; evaluate the inhibitory effect of AgNPs on biofilm construction by crystal violet staining; study the drug resistance of bacteria by gradually increasing the concentration of AgNPs; and detect the toxicity of AgNPs to cells by CCK-8 method. RESULTS: AgNPs has a significant bactericidal effect on a variety of drug-resistant bacteria. After exposure to AgNPs solution for 12 hours, the number of E. coli decreased sharply, and S. aureus was basically eliminated after 16 hours. In particular, AgNPs showed stronger inhibition against Gram-negative bacteria. In addition, AgNPs can effectively hinder the formation of bacterial biofilm, and its inhibitory effect increases with the increase of AgNPs solution concentration. When AgNPs is used for a long time, the development of bacterial resistance to it is slow. From the point of view of safety, AgNPs has no harmful effects on organisms and has biosafety. CONCLUSION: AgNPs can inhibit MDR, and the bacteriostatic ability of Gram-negative bacteria is higher than that of Gram-positive bacteria. It can also inhibit the formation of bacterial biofilm, avoid drug resistance and reduce cytotoxicity.
Show more
Keywords: AgNPs, MDR, bacteriostatic effect, drug resistance
Abstract: BACKGROUND: Numerous studies have confirmed that stimulating the mid-brain motor nuclei can regulate movement forcibly for robo-pigeons, but research on behavior modulation using non-motor nuclei is scarce. OBJECTIVE: In this study, we constructed a spatial preference behavior by stimulating the stratum griseum periventriculare (SGP), a nucleus correlated with fear and escape, for robo-pigeons. METHODS: The study was carried out in a square-enclosed experimental field, with a designated box serving as the ‘safe’ area for the robo-pigeons. If the robo-pigeon exits this area, the SGP will be stimulated. After a brief training period, the robo-pigeons will have…a clear spatial preference for the box. RESULTS: The result from five pigeons has shown that, after simple training, the animals develop a spatial preference for the box. They can quickly return to the box in any situation when the SGP is stimulated, with a success rate exceeding 80% (89.0 ± 6.5%). Moreover, this behavior is highly stable and remains consistent, unaffected by changes in the location of the box or the interference box. CONCLUSION: The results prove that using the electrical stimulus could enable animals to accomplish more complex tasks. It may offer a novel approach to regulating pigeon behavior and further advance the study of cyborg animals.
Show more
Abstract: BACKGROUND: Osteoarthritis (OA) is a chronic and degenerative joint disease that remains a great challenge in treatment due to the lack of effective therapies. 4-octyl itaconate (4-OI) is a novel and potent modulator of inflammation for the treatment of inflammatory disease. However, the clinical usage of 4-OI is limited due to its poor solubility and low bioavailability. As a promising drug delivery strategy, injectable hydrogels offers an effective approach to address these limitations of 4-OI. OBJECTIVE: The aim of the study was to verify that the composite 4-OI/SA hydrogels could achieve a controlled release of 4-OI and reduce…damage to articular cartilage in the group of osteoarthritic rats treated with the system. METHODS: In this study, an injectable composite hydrogel containing sodium alginate (SA) and 4-octyl itaconate (4-OI) has been developed for continuous intra-articular administration in the treatment of OA. RESULTS: After intra-articular injection in arthritic rats, the as-prepared 4-OI/SA hydrogel containing of 62.5 μM 4-OI effectively significantly reduced the expression of TNF-α, IL-1β, IL-6 and MMP3 in the ankle fluid. Most importantly, the as-prepared 4-OI/SA hydrogel system restored the morphological parameters of the ankle joints close to normal. CONCLUSION: 4-OI/SA hydrogel shows a good anti-inflammatory activity and reverse cartilage disruption, which provide a new strategy for the clinical treatment of OA.
Show more