A new approach to compensate the geometric distortion in the synthetic aperture ultrasonic imaging system
In the field of ultrasonic imaging technology, the problem of geometric distortion is often encountered, especially in the ultrasonic near-field. In this study, a new approach is proposed to compensate for geometric distortion in the synthetic aperture ultrasonic imaging system. This approach is based on the synthetic aperture ultrasonic holographic B-scan (UHB) imaging system, which is a combination of ultrasonic holography based on the backward propagation principle and the conventional B-scan technique. To solve the geometric distortion problem, the operation of the spatial compression and resampling in the frequency domain are introduced. The main advantage of the approach is that the real holographic value can be calculated without distortion by using the spatial interpolation function after the spatial frequency compression. After the compensation for geometric distortion is performed, the synthetic aperture technique based on the backward propagation principle is then applied in the process of the two-dimensional numerical imaging reconstruction. Both the simulation and measurement experiment show that the approach is promising. The geometric distortion that is dependent on the wave front angle can be effectively compensated. The spatial resolution is practically uniform throughout the depth range and close to the theoretical limit in the experiments.