You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Modelling complex features from histone modification signatures using genetic algorithm for the prediction of enhancer region

Abstract

Using Genetic Algorithm, this paper presents a modelling method to generate novel logical-based features from DNA sequences enriched with H3K4mel histone signatures. Current histone signature is mostly represented using k-mers content features incapable of representing all the possible complex interactions of various DNA segments. The main contributions are, among others: (a) demonstrating that there are complex interactions among sequence segments in the histone regions; (b) developing a parse tree representation of the logical complex features. The proposed novel feature is compared to the k-mers content features using datasets from the mouse (mm9) genome. Evaluation results show that the new feature improves the prediction performance as shown by f-measure for all datasets tested. Also, it is discovered that tree-based features generated from a single chromosome can be generalized to predict histone marks in other chromosomes not used in the training. These findings have a great impact on feature design considerations for histone signatures as well as other classifier design features.