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Abstract. Using Genetic Algorithm, this paper presents a modelling method to generate novel logical-based features from 
DNA sequences enriched with H3K4mel histone signatures. Current histone signature is mostly represented using k-mers 
content features incapable of representing all the possible complex interactions of various DNA segments. The main 
contributions are, among others: (a) demonstrating that there are complex interactions among sequence segments in the 
histone regions; (b) developing a parse tree representation of the logical complex features. The proposed novel feature is 
compared to the k-mers content features using datasets from the mouse (mm9) genome. Evaluation results show that the new 
feature improves the prediction performance as shown by f-measure for all datasets tested.  Also, it is discovered that tree-
based features generated from a single chromosome can be generalized to predict histone marks in other chromosomes not 
used in the training. These findings have a great impact on feature design considerations for histone signatures as well as 
other classifier design features. 
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1. Introduction 

Comprehension of gene regulation involves locating the cis-acting regulatory elements comprising 
clusters of transcription factor binding sites (TFBS) that initiate the mechanism of gene transcription. 
Enhancers are a type of cis-regulatory element that promote gene expression and often are essential for 
eliciting complex expression patterns of developmental genes. An enhancer region typically spans a 
few hundred base pairs (bp) comprising clusters of TFBSs (at multiple sites) that work in cis--each site 
is about 6 to 20bp in length.  
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Enhancer regions can also span from ten to hundreds of thousand bp in length–in the upper or the 
lower region of the genes it regulates. Thus, this becomes a challenging task for prediction because the 
genome-wide sequence search space is large. In addition, its DNA characteristics are ill-defined and 
non-specific to enhancers at large. Traditional enhancer prediction methods employ motif profiles 
searching for individual enhancer sites. This approach is useful but produces high false positive hits 
because they fail to characterize the specificity of the sites. Other approaches use additional features to 
reduce the occurrences of false positives such as cross-species sequence conversation analysis, identi-
fication of the presence of cis-regulatory module, and correlational analysis using epigenetic marks. 
This paper focuses on generating features from epigenetic marks to enhance prediction accuracy of the 
enhancer regions. 

Epigenetic marks refer to elements that change in tandem with cellular activities such as gene ex-
pressions while its DNA sequences remain unchanged [1]. Currently, one of the most widely studied 
elements is histone modification where genomic locations are known to correlate strongly with specif-
ic enhancer regions. Existing methods using histone marks largely employs the supervised learning 
methods [2, 3]. Good feature representation from histone marks is definitely one of the key factors in 
producing good prediction results. The k-mers frequency [3] feature is typically used to represent his-
tone features. Nevertheless, these features only capture the content composition of the histone regions 
but not the co-existence of DNA features and their possible interactions. 

This paper hypothesizes the existence of complex and higher-order features in DNA sequences. A 
method is proposed to describe these complex features using parse trees generated by Genetic Algo-
rithms (GA) [4]. The effectiveness of these tree features is determined by scrutinizing and characteriz-
ing the enrichment of H3K4me1 epigenetic marks in DNA sequences.  

2. Related works 

Computational enhancer prediction can generally be categorized into direct or indirect methods de-
pending on whether the exact or the approximate locations of enhancer are inferred. Direct methods 
use motif profiles that employ machine learning algorithms (supervised or otherwise) to predict candi-
date enhancer regions or TFBSs locations. Meanwhile, indirect methods use correlational analysis of 
enhancer regions with some landmark DNA features for the inference of approximate locations—e.g., 
CpG island, chromatin or histone marks.  Extensive studies on indirect methods are focused mainly in 
the generation and modelling of discriminative features from landmarks of supervised learning [2, 3]. 
Clearly, the key to success for these methods requires good representation of the DNA landmarks so 
that the non-landmarks could be clearly differentiated.  

Genome-wide mapping of epigenetic marks presents an unprecedented opportunity for indirect en-
hancer prediction using epigenetic features. Significant findings from [3,5,6] conclude that the dis-
tance between H3K4me1 enrichment and enhancer regions is approximately 100 to 2000bp in length. 
For example, one study [3] has successfully predicted the 7361 and 7788 melanocyte enhancers in the 
mouse and human genomes respectively using the H3K4me1 marks.  
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Conventionally, either ChIP-chip or ChIP-seq is used to create a high resolution mapping and profil-
ing of these histone modification distributions [7, 5]. However, these experimental techniques are cost-
ly and incapable of culturing all possible cell conditions needed to identify active histone modification 
marks. Consequently, data related to histone modifications is unavailable for most organisms. There-
fore, there is a pressing need to utilize computational approaches to identify and characterize DNA 
sequences enriched with histone modification marks.  

Meanwhile, another study [8] uses content (k-mer frequency) and context (distance from the gene) 
based features to locate histone modification signatures using Support Vector Machine (SVM). The 
prediction of H3K4me1 using 20344 positive and 20401 negative sequences of the yeast genome 
achieves an accuracy of 90.86%. High accuracy in prediction is achieved when 9-mer frequency with 
and distance from the nearest annotated genes are used as features for SVM prediction. However, the 
performance is drastically reduced to 72.61% when only 9-mer features are involved and deteriorates 
further when shorter nucleotides are used. Another study [9] successfully predicts the sequences en-
riched with H3K4me1 in the human genome with a high area under the ROC score of 0.9. The predic-
tion is performed on CD4+ T cells where histone modification information is obtained from [7]. In-
stead of using k-mer features only, they integrate dinucleotide (2-mer) frequencies with wavelet fea-
tures to develop a modified N-score model for histone prediction.  

3. Methods and materials 

3.1. GA-based feature generation  

The overall workflow of the proposed method is shown in Figure 1. This approach is motivated by 

Fig. 1. Schematic diagram of complex tree feature generation.  
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the discovery that functional elements are characterized by complex and possible logical interactions 
among the features themselves. In fact, a large body of research works could be used to support this 
claim, e.g., works on predicting the initializing sites for transcription, modelling of family motifs and 
binding sites of proteins [10]. It is also observed that features of functional elements are usually ill-
defined and not well understood. It usually requires a large set of features (in the range of thousands) 
to represent complex properties. In brief, the proposed approach employs GA to generate logical rela-
tionship of short DNA segments (i.e., k-mers) represented by a complex tree. The short DNA segment, 
i.e., k-mers, comes in two patterns: length k continuous DNA letters (A, C, G, T) or a couple of short-
length l k-mers separated by gaps of various sizes (< 5). The formal is labeled pattern-1 while the lat-
ter is called pattern-2. Assuming that the H3K4me1 content features take up one of these patterns, log-
ical interactions between the content features are then modelled using the logical ‘AND’ and ‘OR’ 
operators. The generated logical features are used to construct feature vectors for SVM training. The 
tree structure is used to represent the logical interactions between the two patterns (Supplementary 
Figure S1-C). The logical operators become the parent node of any of the two patterns in a tree (Sup-
plementary Figure S1-C). Thus creating a logical and hierarchical relationship of important features 
found in the H3K4me1 sequence. The nodes and the patterns in a tree are evolved by applying the cus-
tomized genetic operators (see Supplementary Figure S2-S3). Tree features (i.e. chromosome) are 
evaluated using a fitness function value to determine their ability to discriminate positive from nega-
tive sequences. Tree features are ranked and the top N will be selected for binary feature vector gener-
ation (Supplementary Section 1.4). SVM is subsequently trained using the binary feature vectors for 
classification purpose. 

3.2. Fitness function  

Every tree feature is assigned a fitness value where features with the larger values have higher 
chances to be selected for genetic operations. Eq. (1) shows the fitness function for GA comprising 
two sections.  
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where T represents a tree feature; N, a and b represent the total number of patterns in T, the number of 

positive sequences and the number of negative sequences, respectively; is� is the ith positive sequence. 

Whereas is� is the ith negative sequence. ( , )f x y  is a binary indicator function which returns a ‘1’ if a 
feature x (i.e., a pattern or tree feature) is present in the DNA sequence y. Otherwise, it returns a ‘0’. 
The first section of the equation aims to capture individual patterns in a tree with the highest discrimi-
native value. That is, a discriminative candidate pattern in a tree should be over-represented in a posi-
tive sequence set but is rare in a negative sequence set. This will lead to selection of trees with patterns 
that discriminate between a positively and negatively histone-marked DNA sequences. Nevertheless, 
this part of the equation only selects pattern scores with the maximum value to ensure diversity in the 
population. On the other hand, the second part of Eq. (1) is used to evaluate the rareness of tree fea-
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tures as a whole.  

3.3. Datasets 

Coordinate of sequences enriched with H3K4me1 are obtained from [3], cisGenome is then used to 
identify the peak of H3K4me1 from the ChIP-seq data of melan-a cells in the mouse genome. One 
thousand (from 3794) histone-marked sequences is randomly selected from Chromosome 1 for feature 
generation. Subsequently, negative sequences (1000) are randomly selected from coordinate of se-
quences flanked by H3K4me1 enrichments [3]. Another 1000 histone-marked sequences from Chro-
mosome 2 till 6 are also downloaded for testing purposes. Meanwhile, a different negative set (1000) 
is randomly selected from sequences flanked by H3K4me1 enrichments for testing.  

4. Results  

In this section, comparison results of the tree and the k-mer feature will be presented using real da-
taset from the mouse genome. Experiments are also performed to determine how the number of top 
tree features cut-off and GA generation influence the classification performance. The precision, recall 
and f-measure rates are used as performance measure for all the experiments. 

4.1. Parameters setting 

Experiments were conducted to determine how the number of selected top tree features to generate 
feature vector affects the classifier’s performance (Supplementary Section 2). The result found that 
500 top features performed the best prediction in 5 out of 8 of the tested chromosomes (Supplementary 
Table S2, Figure S4). In another experiment, we determine how the number of GA generations would 
affect the classifier’s performances. It is found that a reasonable GA generation is 30 (Supplementary 
Table S3, Figure S5). 

4.2. Comparison with k-mer feature 

To evaluate the proposed feature representation, it is compared to the widely used k-mer feature us-
ing the datasets that have been prepared. Selected 500 top tree features from chromosome 1 are used to 
train SVM while prediction is carried out on different chromosomes to discover the generality of these 
features. GA was trained with 1000 DNA sequences of positive set while the negative set consists of 
1000 DNA sequences. Different sets of positive and negative sequences, 1000 in each set, are used for 
testing. Results from the average of 5-fold cross-validation are shown in Table 1. For the k-mer feature, 
4, 5 and 6-mer are used in the evaluation. Since the total number of k-mer features depends on its 
length, we select at least 50% of the k-mers from each set (i.e, 4, 5, 6) as inputs to the SVM classifier. 
In addition to that, we also select the top 50 k-mers for benchmarking. Normalized k-mer frequencies 
in the input DNA dataset are calculated to serve as inputs to the classifier.  

Table 1 shows the results of the comparison between the tree and the k-mer feature. The best result 
for each test case is highlighted in bold. It can be seen that classifiers constructed by using the tree fea-
ture achieved higher precision rates in comparison to all the k-mer features used. 5-mer and 6-mer fea-
ture performed slightly better than the tree feature in terms of recall rates. 
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Nevertheless, the tree feature attained better balance between precision and recall rates, given by the 

f-measure as depicted in Figure 2. For example, the average f-measure using the 500 tree features 
reached 0.729 which is significantly outperformed top 50 4-mer, 5-mer and 6-mer features by 0.081, 
0.045 and 0.082 as well as top 50% 4-mer, 5-mer and 6-mer by 0.009, 0.013 and 0.020, respectively. 

To further verify the proposed feature representation, classifiers are constructed using tree features 
produced from chromosome 2 and chromosome 7. Again, the top 500 top features are selected for 
classifier training with five folds cross-validation. The evaluation results in Tables 2(a) and 2(b) are 
consistent in terms of performance level in comparison to results obtained using features from chro-
mosome 1. This implies that the tree feature representation is non-specific to single but other chromo-
somes as well. 

An analysis is also performed to analyze the characteristics of the generated tree-features. It is found 
that most of the tree features are composed of combinations of the two patterns (Supplementary Sec-
tion 4)  

 

 

Fig. 2. Comparison of F-measure using different features for classification. 
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Table 1 

Comparison of precision and recall rates using tree and k-mer feature for prediction 

Feature type 
 

Chr 2 Chr 3 Chr 4 Chr 5 Chr 6 
P R P R P R P R P R 

500 tree features 0.818 0.595 0.839 0.687 0.827 0.632 0.840 0.691 0.830 0.643 
128 4-mer 0.775 0.631 0.79 0.689 0.784 0.666 0.792 0.695 0.78 0.650 
512 5-mer  0.738 0.630 0.764 0.727 0.753 0.684 0.759 0.706 0.748 0.664 
2048 6-mer 0.721 0.638 0.740 0.702 0.738 0.695 0.740 0.703 0.735 0.684 
50 4-mer 0.675 0.567 0.765 0.651 0.695 0.621 0.695 0.621 0.608 0.608 
50 5-mer 0.719 0.600 0.741 0.674 0.730 0.635 0.743 0.680 0.726 0.622 
50 6-mer 0.674 0.613 0.677 0.620 0.678 0.624 0.687 0.649 0.668 0.595 
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5. Discussion 

The objective of this paper is to demonstrate the good performance of the proposed tree feature rep-
resentation of histone marks for classification. A method for generating logical rule-based features for 
H3K4me1 histone mark is proposed. It is shown for the first time that complex feature modelling is 
necessary to effectively model histone modification sequence signatures. These complex tree features 
not only are able to capture a fixed number of nucleotide frequencies in DNA sequences it also repre-
sents the nucleotides logical interactions. Empirical results show that the diverse combinatorial pat-
terns (with logical operators) perform better than the most widely used k-mer feature.  

Nonetheless, the model certainly needs to be improved as the features generated are low in sensitivi-
ty. This could be attributed to the lack of diversity in the GA population in which the problem of early 
convergence might need to be addressed. In particular, the fitness function and the selection procedure 
of GA used in producing tree features could be made more robust. Thus, future works should focus on 
fine-tuning the GA parameters to generate features diverse enough to represent the whole search space. 
Last but not least, though the paper is primarily concerned with modelling features from H3K4me1 
enriched sequences, it can be potentially made applicable to other types of epigenetic marks such as 
H3K4me3, H3Ac and P300. Combining them for generating discriminative features would be chal-
lenging but has been shown to improve sensitivity and specificity in motif prediction. 
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