Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Frontiers in Biomedical Engineering and Biotechnology – Proceedings of the 2nd International Conference on Biomedical Engineering and Biotechnology, 11–13 October 2013, Wuhan, China
Article type: Research Article
Authors: Chen, Yifei; | Hou, Ping | Manderick, Bernard
Affiliations: School of Information Science, Nanjing Audit University, 86 Yushan Rd(W), 211815, Nanjing, P.R. China. E-mail: [email protected] | Fondazione Bruno Kessler (FBK-irst), Trento, Italy | Computational Modeling Lab, Vrije Universiteit Brussel, Brussels, Belgium
Note: [] Corresponding author. E-mail: [email protected]
Abstract: Protein-protein interaction (PPI) is essential to understand the fundamental processes governing cell biology. The mining and curation of PPI knowledge are critical for analyzing proteomics data. Hence it is desired to classify articles PPI-related or not automatically. In order to build interaction article classification systems, an annotated corpus is needed. However, it is usually the case that only a small number of labeled articles can be obtained manually. Meanwhile, a large number of unlabeled articles are available. By combining ensemble learning and semi-supervised self-training, an ensemble self-training interaction classifier called EST_IACer is designed to classify PPI-related articles based on a small number of labeled articles and a large number of unlabeled articles. A biological background based feature weighting strategy is extended using the category information from both labeled and unlabeled data. Moreover, a heuristic constraint is put forward to select optimal instances from unlabeled data to improve the performance further. Experiment results show that the EST_IACer can classify the PPI related articles effectively and efficiently.
Keywords: Interaction article classification, ensemble semi-supervised learning, instance selection, feature weighting
DOI: 10.3233/BME-130935
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 1, pp. 1323-1332, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]