Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Frontiers in Biomedical Engineering and Biotechnology – Proceedings of the 2nd International Conference on Biomedical Engineering and Biotechnology, 11–13 October 2013, Wuhan, China
Article type: Research Article
Authors: Guo, Lei; ; | Wang, Yao | Yu, Hongli | Yin, Ning | Li, Ying
Affiliations: Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin, China
Note: [] This work was supported in part by the Specialized Research Fund for the Doctoral Program of Higher Education, China under (No. 20121317110002) and the Natural Science Foundation of Hebei Province, China (No. H2013202176).
Note: [] Corresponding author. E-mail: [email protected]
Abstract: Acupuncture is based on the theory of traditional Chinese medicine. Its therapeutic effectiveness has been proved by clinical practice. However, its mechanism of action is still unclear. Magnetic stimulation at acupuncture point provides a new means for studying the theory of acupuncture. Based on the Graph Theory, the construction and analysis method of complex network can help to investigate the topology of brain functional network and understand the working mechanism of brain. In this study, magnetic stimulation was used to stimulate Neiguan (PC6) acupoint and the EEG (Electroencephalograph) signal was recorded. Using non-linear method (Sample Entropy) and complex network theory, brain functional network based on EEG signal under magnetic stimulation at PC6 acupoint was constructed and analyzed. In addition, the features of complex network were comparatively analyzed between the quiescent and stimulated states. Our experimental results show the topology of the network is changed, the connection of the network is enhanced, the efficiency of information transmission is improved and the small-world property is strengthened through stimulating the PC6 acupoint.
Keywords: EEG signal, magnetic stimulation, acupuncture point, brain functional network, sample entropy
DOI: 10.3233/BME-130904
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 1, pp. 1063-1069, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]