Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Frontiers in Biomedical Engineering and Biotechnology – Proceedings of the 2nd International Conference on Biomedical Engineering and Biotechnology, 11–13 October 2013, Wuhan, China
Article type: Research Article
Authors: Wu, Ming-Yue | Li, Quan-Li | Chen, Lian-Zi
Affiliations: Stomatologic Hospital & College, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China | Department of Internal Medicine of the School Hospital, Anhui Medical University, Hefei 230032, China
Abstract: In this study, orthophosphoric acid (H3PO4) in the treatment of porous titanium (Ti) is investigated and the ability of rat bone marrow stromal cells (BMSCs) is assessed to proliferate and differentiate on these modified surfaces in vitro. To improve the cytocompatibility of Ti surfaces, pure Ti was activated commercially by simple chemical pretreatment in H3PO4 with different densities. Next, the phosphorylated specimens were soaked in simulated body fluid (SBF) to study the effect of biomineralization. The3-[4,5-dimethylthiazol-2-y1]-2, 5-diphenytetrazolium bromide (MTT) assay and the measurement of alkaline phosphatase (ALP) activity utilized to assess proliferation and differentiation of BMSCs on exposure to modified Ti surfaces. Scanning electron microscopic (SEM) images showed that the surfaces of the pre-treated samples were characterized by a complex structure which consisted of a mesh-like morphological matrix and an uniform surface with different morphic crystals of titanium dihydrogen orthophosphate (Ti(H2PO4)3). These crystals contained hydroxyl with phosphate residues that resulted in biomineralization of cells. Therefore, BMSCs reveales a well-dispersed morphology on these modified and functionalized Ti surfaces. The viability and ALP activity of BMSCs on these altered biomimetic surfaces are found to be greater than those of the controls. It is concluded that the treatment of Ti by acid etching in orthophosphoric acid is a suitable method to enhance the in vitro proliferation and differentiation of BMSCs.
Keywords: titanium implant, phosphorylation, cytocompatibility, stem cells, biomaterials, cellular engineering
DOI: 10.3233/BME-130854
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 1, pp. 659-671, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]