Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Frontiers in Biomedical Engineering and Biotechnology – Proceedings of the 2nd International Conference on Biomedical Engineering and Biotechnology, 11–13 October 2013, Wuhan, China
Article type: Research Article
Authors: Miao, Feng-qin; | An, Yan-li | Yang, Rui | Tang, Qiu-sha | Zhang, Jian-qiong
Affiliations: Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, No. 87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, China | Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, No. 87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, China | Department of Pathology and Pathophysiology, Medical School, Southeast University, No. 87, Dingjiaqiao Road, Nanjing 210009, Jiangsu Province, China
Note: [] Email: [email protected]
Abstract: This paper aimed to investigate the preparation of doxorubicin-loaded bovine serum albumin nanoparticles (DOX/BSANP) and their effect on killing liver cancer cells in vitro and in vivo. DOX/BSANP was prepared using a desolvation-chemical crosslinking method. Their morphology and particle size were observed using transmission electron microscopy (TEM). The envelopment, drug-loading rates and slow-release characteristics were determined spectrophotometrically. Their ability to kill liver cancer cells in vitro was determined using the methyl thiazolyl tetrazolium (MTT) assay and flow cytometry (FCM). The tumor-suppressing effect of the nanoparticles in experimental animals in vivo was also evaluated. Under TEM, DOX/BSANP appeared spherical and was distributed uniformly, with a diameter of about 120 nm and hydrated particle size of 170 nm determined by dynamic light diffraction. The envelopment rate was 82% and the drug-loading rate was 11.2%. The in vitro drug-release experiment showed that about 50% of the drug in drug-loaded nanoparticles was released continuously and slowly for 7 days. The MTT assay showed that DOX/BSANP significantly inhibited cell proliferation, while FCM showed that it induced tumor cell apoptosis. The in vivo tumor suppression test showed that the therapeutic effect of drug-loaded nanoparticles was superior to that of DOX alone.
Keywords: DOX, albumin nanoparticles, desolvation-chemical crosslinking, liver cancer
DOI: 10.3233/BME-130847
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 1, pp. 599-607, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]