Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Frontiers in Biomedical Engineering and Biotechnology – Proceedings of the 2nd International Conference on Biomedical Engineering and Biotechnology, 11–13 October 2013, Wuhan, China
Article type: Research Article
Authors: Zheng, W.; | Ma, J.Y. | Guo, F. | Li, J.; | Zhou, H.M. | Xu, X.X. | Li, L. | Zheng, Y.F.;
Affiliations: Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China | Deparment of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China | School of Chemistry and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040, China
Note: [] Corresponding author. Tel.&fax: +86 45 8251 8644. E-mail: [email protected] (W. Zheng); [email protected] (J. Li)
Note: [] Corresponding author. Tel.&fax: +86 45 8251 8644. E-mail: [email protected] (W. Zheng); [email protected] (J. Li)
Abstract: The paper demonstrates a novel glucose/O2 biofuel cell (BFC) based on the electrospun collagen-SWNTs nanofibres with the glucose oxidase (GOD) as the anodic biocatalysts and the laccase as the cathodic biocatalysts. With an average diameter of about (260±95) nm, the electrospun collagen-SWNTs nanofibres exhibited smooth surfaces. The collagen-SWNTs nanofibres modified electrode showed good electron transfer behavior, because of the properties of SWNTs and the three-dimensional reticular structure of the electrospun nanofibers. The GOD and laccase, immobilized in the collagen-SWNTs nanofibres, exhibited good catalytic activity towards glucose oxidation and oxygen reduction through mediators of ferrocene monocarboxylic acid (FMCA) and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), respectively. The maximum power density of the assembled glucose/O2 BFC based on the electrospun collagen-SWNTs nanofibres was ca. 14.3 μW/cm2. Moreover, more than 50% of the initial value remained after continuous operation of 100 h. The results indicated the potential to apply the electrospun collagen-SWNTs nanofibres for novel BFC device.
Keywords: Electrospun, collagen-SWNTs nanofibres, glucose oxidase, laccase, biofuel cell
DOI: 10.3233/BME-130803
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 1, pp. 229-235, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]