Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhao, Lang | Wu, Chengtie | Lin, Kaili | Chang, Jiang;
Affiliations: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
Note: [] Address for correspondence: Jiang Chang, State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China. Tel.: +86 21 52412804; Fax: +86 21 52413903; E-mail: [email protected].
Abstract: Ideal scaffolds for bone tissue engineering require 3D interconnected porous structures, enough mechanical strength for hand of treatment as well as proper bioactivity and biodegradability. Calcium silicate (CaSiO3, CS) scaffolds have been studied for bone tissue engineering application due to their excellent bioactivity. However, the main disadvantages of CS scaffolds are their low mechanical strength and high alkaline ionic products. In this study, sintered CS scaffolds were prepared and coated with poly(lactic-co-glycolic acid) (PLGA), and the effect of PLGA coating on the mechanical, biodegradable, bioactive properties and drug release of porous CS scaffolds were investigated. The results showed that the PLGA-coated CS scaffolds maintained large pore size and high porosity. The compressive strength of PLGA/CS scaffolds was significantly improved compared to pure CS scaffolds, and increased with the increase of intrinsic viscosity and concentration of PLGA. In addition, the PLGA coating neutralized alkaline level resulted from the ionic products of CS scaffolds and reduced the pH value of biological solution during the degradation of scaffolds. It was found that PLGA/CS scaffolds still maintained excellent apatite-mineralization ability in SBF. Furthermore, the PLGA coating effectively inhibited the burst release and maintained a sustained release of drugs from the CS scaffolds. Our results indicate that the PLGA/CS scaffolds have great potential for bone tissue engineering application by the virtue of improved mechanical strength, and excellent bioactivity, degradation as well as drug-delivery property.
Keywords: CaSiO_3 scaffolds, PLGA, compressive strength, drug release
DOI: 10.3233/BME-2012-0719
Journal: Bio-Medical Materials and Engineering, vol. 22, no. 5, pp. 289-300, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]