Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Cell Therapy, Bioengineering and Regenerative Medicine, September 2008, Nancy, France
Article type: Research Article
Authors: de Mel, Achala | Punshon, Geoffrey | Ramesh, Bala | Sarkar, Sandip | Darbyshire, Arnold | Hamilton, George; | Seifalian, Alexander M.; ;
Affiliations: Centre for Nanotechnology, Biomaterial and Tissue Engineering, UCL Division of Surgery and Interventional Science, University College London, London, UK | Royal Free Hampstead NHS Trust Hospital, London, UK
Note: [] Address for correspondence: Prof. Alexander M. Seifalian, Nanotechnolohy and Regenerative Medicine, University College London, London, UK. Tel.: +44 20 7830 2901; E-mail: [email protected].
Abstract: Endothelial dysfunction or the lack of an endothelium associated with cardiovascular grafts is a major cause of graft failure which is linked to thrombosis and related complications. This study was aimed to (1) biofunctionalise a nanocomposite biomaterial, Polyhedral Oligomeric silsesquioxane modified polycarbonate urea-urethane (POSS–PCU), based small diameter vascular graft and to (2) induce endothelialisation with EPC containing monocytes, which were extracted from peripheral blood. (1) Biofunctionalisation of the nanocomposite polymer: bioactive RGD peptide, which is a functional domain of an extracellular matrix component, fibronectin, was synthesised using fmoc chemistry. A lauric acid hydrophobic “tail” was attached to optimise the RGD orientation on the biomaterial. The peptide was cross linked to POSS–PCU. The presence of RGD on the nanocomposite was tested with water contact angle measurements and specificity tests were carried out with the peptide RAD (2) Progenitor cells were extracted from peripheral blood of adult healthy volunteers and cultured on porous biofunctionalised nanocomposite polymer under static conditions. Cells were also introduced to a circuit to which the grafts are connected and non static pulsatile flow conditions were introduced after 72 h following cell introduction. The degree of cell growth was tested with Alamar Blue assay. Endothelialisation was confirmed with SEM and by immunostaining for endothelial cell markers, CD34, CD31 and eNOS. Water contact angle measurement indicated that biofunctionalisation had increased hydrophilicity of the nanocomposite polymer. Alamar blue indicated a greater presence of cells on biofunctionalised nanocomposite and this relative increase in cell viability was specific to RGD as confirmed with RAD peptides. SEM provided evidence for endothelial cell morphology and this was confirmed with endothelial cell markers with immunostaining. Biofunctionalised nanocomposite polymer-based small diameter bypass graft demonstrated the potential for relatively rapid endothelialisation from cells extracted from peripheral blood.
Keywords: Endothelialisation, RGD peptides, progenitor stem cells, polyhedral oligomeric silsesquioxane, vascular grafts, nanocomposite
DOI: 10.3233/BME-2009-0597
Journal: Bio-Medical Materials and Engineering, vol. 19, no. 4-5, pp. 317-331, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]