Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Leong, K.F. | Wiria, F.E. | Chua, C.K. | Li, S.H.
Affiliations: Rapid Prototyping Research Laboratory, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
Note: [] Corresponding author: K.F. Leong, Associate Professor, School of Mechanical and Aerospace Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore 639798. E-mail: [email protected].
Abstract: Selective Laser Sintering (SLS), an established Rapid Prototyping (RP) process, is investigated for building controlled drug delivery devices (DDD). The drug and its matrix in a powder form were first mixed mechanically before being sintered on the SLS. Each cylindrical DDD is designed with a number of concentric rings separated from each other by a characteristic ‘wall’ created by the laser of the SLS. These rings act as diffusion obstacles to control the rate of release. Poly-ε-caprolactone (PCL) was used as the matrix and Methylene Blue (MB) as the drug model. Samples were built, characterized and tested for homogeneity using Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectrophotometry (FTIR). Experimental results show that the matrices fabricated are not affected by sintering and the polymer and drug model are evenly distributed throughout the matrix. The initial burst effect has been reduced by the increase of the numbers of rings. The linear curve using the Higuchi equation confirmed that the DDD matrix release profile is by diffusion. These results show that the DDD matrix design has promising potential for application in controlled release drug delivery.
Keywords: Drug delivery device, selective laser sintering, diffusion, poly-ε-caprolactone, Methylene Blue
Journal: Bio-Medical Materials and Engineering, vol. 17, no. 3, pp. 147-157, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]