Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mesfar, W. | Shirazi‐Adl, A.; | Dammak, M.
Affiliations: Génie mécanique, Ecole Polytechnique, Montréal, Québec, Canada | LASEM, Ecole Nationale d'Ingénieurs de Sfax, Sfax, Tunisie
Note: [] Corresponding author: A. Shirazi‐Adl, Professor, Department of Mechanical Engineering, Ecole Polytechnique, P.O. Box 6079, Station centre‐ville, Montreal, Quebec, Canada H3C 3A7. E‐mail: [email protected].
Abstract: Proper isotropic and anisotropic friction constitutive equations are developed based on previous friction measurements at cancellous bone–porous coated implant interfaces exhibiting nonlinear load–displacement curves. The simulated friction response is dependent on relative tangential displacements in both orthogonal directions. The interface constitutive matrix contains cross‐stiffness terms identical in isotropic friction but different in anisotropic friction. These terms are due mainly to nonlinearity in response and vanish in unidirectional friction along a principal direction and in cases with Coulomb or linear friction. The interface ultimate resistance is evaluated by an elliptic criterion which becomes circular in isotropic cases. These constitutive relations are implemented in a finite element program which is employed to analyze a bone cube sliding on top of a porous‐surfaced metallic plate, an experimental model used in our earlier measurements. The results for both isotropic and anisotropic frictions demonstrate the coupling between two orthogonal directions. The direction of resultant displacement under a variable load coincides with that of the load only when the friction is isotropic with coupling terms considered. In anisotropic friction, the resultant displacement occurs in a direction different from that of loading. Our previous bi‐directional measurements corroborate well the findings of this study.
Keywords: Nonlinear friction, interface, coupling, finite element method, constitutive equations
Journal: Bio-Medical Materials and Engineering, vol. 13, no. 1, pp. 91-101, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]