Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kamangar, Sarfaraza; b
Affiliations: [a] Research Centre for Advanced Materials Science (RCAMS), King Khalid University, Abha, Kingdom Saudi Arabia | [b] Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha, Kingdom Saudi Arabia E-mail: [email protected]
Correspondence: [*] E-mail: [email protected]
Abstract: BACKGROUND:Coronary artery disease is reported as one of the most common sources of death all over the world. The presence of stenosis (plaque) in the coronary arteries results in the restriction of blood supply, which leads to myocardial infarction. OBJECTIVE:The aim of this study was to investigate the effect of multi stenosis on hemodynamics parameters in idealized coronary artery models with varying degrees of stenosis and interspace distance between the stenosis. METHODS:A finite volume-based software package (Ansys CFX version 17.2) was employed to model the blood flow. The hemodynamic stenosis parameters of blood, such as the pressure, velocity, and wall shear stress were obtained. RESULTS:The computed results showed that the pressure drop is maximum across the 90% area stenosis (AS). The pressure drop is increased as the distance between the proximal and distal stenosis is decreased across the proximal stenosis for the model P70_D70 during the systolic period of the cardiac cycle. A recirculation zone is formed behind the stenosis and is restricted by the occurrence of distal stenosis as the interspacing distance decreases, which could lead to further progression of stenosis in the flow-disturbed area. The wall shear stress was found to increase as the distance between the proximal and distal stenosis is increased across the distal stenosis. The maximum wall shear stress was found at 90% AS. CONCLUSIONS:In the clinical diagnosis, an overestimation of distal stenosis severity could be possible. Furthermore, the low wall shear stress zone in between the proximal and distal stenosis may help atherosclerotic growth or merge adjacent stenosis.
Keywords: Coronary artery, atherosclerosis, stenosis, hemodynamic, wall shear stress
DOI: 10.3233/BME-211234
Journal: Bio-Medical Materials and Engineering, vol. 32, no. 5, pp. 309-321, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]