Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lewandrowski, Kai‐Uwe; | Schollmeier, Georg | Ekkemkamp, Axel | Uhthoff, Hans K. | Tomford, William W.
Affiliations: Orthopaedic Research Laboratories, Massachusetts General Hospital, Boston, MA, USA | Klinik fur Unfall‐ und Wiederherstellungschirurgie, Unfallkrankenhaus Berlin, Krankenhaus Berlin‐Marzahn mit Berufsgenossenschatlicher Unfallklinik e.V., Berlin, Germany | Bone & Joint Research Laboratory, Ottawa General Hospital, ON, Canada
Note: [] Corresponding author: Kai‐Uwe Lewandrowski, MD, Orthopaedic Research Laboratories, Massachusetts General Hospital, WACC 508, 15 Parkman St., Boston, MA 02114, USA. Tel.: +1 617 726 7652; Fax: +1 617 975 1914; E‐mail: [email protected].
Abstract: Laser perforated and partially demineralized cortical bone allografts were orthotopically transplanted into sheep tibiae. This paper reports results of the mechanical testing of the transplanted bones, which was done at nine months postoperatively. Animals were divided into three groups of eight according to the type of cortical allograft used: group 1, no treatment; group 2, laser hole grid; and group 3, laser hole grid and partial demineralization. Thus, changes in flexural rigidity of 24 transplanted whole tibiae were investigated. Starting in the anterior direction at the tibial tuberosity, the flexural rigidity was determined using a nondestructive 4‐point bending test. The elliptical distribution of the flexural rigidity was compared to the untreated contralateral control bone of each animal. Mechanical parameters were defined as percentage rates for comparative analysis between groups. Flexural rigidity measurement showed that bones transplanted with untreated allografts were stiffer than contralateral control bones. Partial demineralization of allografts reduced the flexural rigidity of transplanted bones below the level of contralateral control bones. Flexural rigidities of test bones transplanted with laser perforated and partially demineralized allografts were higher than those seen in bones transplanted with partially demineralized allografts. These results were corroborated by the histologic analysis which showed that untreated allografts, although surrounded by a periosteal bone cuff that effectively increased their outer diameter. In contrast, excessive bone resorption was observed in partially demineralized allografts. Laser‐perforated and partially demineralized allografts showed histologic evidence of complete incorporation into the host bone. Based on this mechanical evaluation, it was concluded that processing of cortical bone allografts by the combination of perforation and partial demineralization resulted in improved mechanical strength of the transplanted bones as compared to processing by partial demineralization alone.
Journal: Bio-Medical Materials and Engineering, vol. 11, no. 3, pp. 209-219, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]