You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

New derivation method and simulation of skin effect in biological tissue

Based on the electrical properties of biological tissues, bioimpedance measurement technology can be employed to collect physiologic and pathologic information by measuring changes in human bioimpedance. When an alternating current (AC) is applied as a detection signal to a tissue, the current field distribution, which is affected by skin effect, is related to both the bioimpedance of the tissue and the AC frequency. These relations would possibly reduce the accuracy and reliability of the measurement. In this study, an electromagnetic theory-based method, in which cylindrical conductor were divided into layers, was used to obtain current field distribution models of human limbs. Model simulations were conducted in MATLAB. The skin effect phenomenon and its characteristics in human tissues at different frequencies were observed, thus providing essential data on skin effect, which are useful in the development of bioimpedance measurement technology.