Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Qian, Chao | Zhang, Fuqiang; | Sun, Jian
Affiliations: Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
Note: [] Address for correspondence: Fuqiang Zhang, Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China. E-mail: [email protected]
Abstract: The aim of this study is to evaluate the feasibility of fabricating titanium(Ti)/hydroxyapatite(HA) composite and functionally graded implant by three-dimensional printing (3DP) technology. Nano-scale Ti and HA powders were mixed at the ratio of 8:2 and prepared with water-soluble binder. The Ti/HA composite CAD model was designed to be in cylinder shape (25 mm in diameter, 20 mm in height) with the 100% bond area in each layer. The functionally graded implant was 25 mm in diameter and 10 mm in height with two segments. The upper segment was composed of 100% Ti in each layer, whereas the lower was composed of 80%Ti/20%HA. The composite and functionally graded implant were fabricated by 3DP and sintered at 1200°C under protective argon atmosphere. There occurred a chemical reaction between Ti and HA, in which new resultants of Ca3(PO4)2, CaTiO3, TiO2 and CaO were created. The sintered Ti/HA composite had the aperture size from 50 to 150 μm and the compressive strength of 184.3±27.1 MPa. The result of this study demonstrated that it was feasible to fabricate Ti/HA composite and functionally graded implant by 3DP technology. The microstructure and mechanical properties of Ti/HA composite and functionally graded implant were conductive to bone cell ingrowth, resulting in the wide application of this biocomposite.
Keywords: Composite, solid freeform fabrication, functionally graded implant
DOI: 10.3233/BME-151263
Journal: Bio-Medical Materials and Engineering, vol. 25, no. 2, pp. 127-136, 2015
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]