Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Yadav, Vishakha | Ganesh, P. | Thippeswamy, G.
Article Type: Research Article
Abstract: The determination and categorization of red blood cells (RBCs) from microscopic pictures is a critical step in the diagnosis of sickle cell disease (SCD). Traditionally, such procedures are performed manually by pathologists using a light microscope. Furthermore, manual visual evaluation is a time-consuming operation that relies on subjective judgment, resulting in variations in RBC recognition and counts. Mature If there is a blood problem, RBCs suffer morphological alterations. There are both automated and manual systems available on the market for counting the number of RBCs. Manual counting entails collecting blood cells with a Hemocytometer. The traditional procedure of exposing the …smear below a microscope and physically measuring the cells yields inaccurate findings, putting clinical laboratory staff under stress. Automatic counters are incapable of detecting aberrant cell. The computer-aided method will assist in achieving accurate outcomes in minimum time. In this study presents an image processing method for separating red blood cells from several other blood products. Its goal is to analyze and interpret blood smear images to aid in the categorizing of red blood cells across 11 categories. The WBCs are extracted from the image using the K-Medoids technique, that is resistant to exterior disturbance. Granulometric assessment has been used to distinguish between red and WBCs. Feature extraction is used to obtain important features that aid in categorization. The categorization outcomes aid in a rapid diagnosis of disorders such as Normochromic, Iron Deficiency, Hypochromic, Sickle Cell, and Megaloblastic. Show more
Keywords: Red blood cells (RBCs), determination, categorization, computer-aided framework, diagnosing disorder, Sickle cell
DOI: 10.3233/JIFS-234129
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7647-7659, 2023
Authors: Liu, Ning | Zhao, Jianhua
Article Type: Research Article
Abstract: With the explosive increase of information, recommendation system is applied in a variety of areas. However, the performance of recommendation system is limited due to issues such as data sparsity, cold starts and poor semantic understanding. In order to make full use of external information to assist recommendation, deeply mine the semantic information of review text and further improve the performance of recommendation system, a deep recommendation system based on knowledge graph and review text (Drs-kgrt) is proposed in this paper. In Drs-kgrt, knowledge graph, review text and the social records between users are used as auxiliary information to improve …recommendation performance. Firstly, the review text is divided into user review text and item review text. BERT (Bidirectional Encoder Representation from Transformers) is used to accurately understand semantic information in user review text and the social records between users. The trust relationship between users and user preferences are fully mined to form user feature vectors. Secondly, BERT and knowledge graph entity recognition link technology are combined to extract item attribute feature entities and their associated entities. The fine-grained features of the items are analyzed to form item feature vectors. Thirdly, based on the scoring matrix, latent vectors of users and items are obtained by matrix decomposition. The deep features of users and items are generated based on user feature vectors, item feature vectors, latent vectors of users and items, the deep recommendation system is established to predict user scores for items. Finally, experiments are conducted on the Douban dataset and Amazon Movie Review dataset, the results show that the proposed algorithm can achieve better performance compared with other benchmark recommendation algorithms. Show more
Keywords: Knowledge graph, personalized recommendation, user review, item review, social relationships
DOI: 10.3233/JIFS-230584
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7661-7673, 2023
Authors: Aramuthakannan, S. | Ramya Devi, M. | Lokesh, S. | Kumar, R.
Article Type: Research Article
Abstract: The increased usage of the internet and social networks generates a large volume of information. Exploring through the large collection is time-consuming and hard to find the required one, so there is a serious need for a recommendation system. Based on this context several movie recommendation (MR) systems have been recently established. In addition, they have poor data analytics capability and cannot handle changing user preferences. As a result, there are many movies listed on the recommendation page, which provides for a poor user experience is the major issue. Therefore, in this work, a novel Taymon Optimized Deep Learning network …(TODL net) for recommending top best movies based on their past choices, behaviour and movie contents. The deep neural network is a combination of Dilated CNN with Bi-directional LSTM. The DiCNN-BiLSTM model eliminates the functionality pooling operations and uses a dilated convolution layer to address the issue of information loss. The DiCNN is employed to learn the movie contents by mining user behavioral pattern attributes. The BiLSTM is applied to recommend the best movies on basis of the extracted features of the movie rating sequences of users in other social mediums. Moreover, for providing better results the DiCNN-BiLSTM is optimized with Taymon optimization algorithm to recommend best movies for the users. The proposed TODL net obtains the overall accuracy of 97.24% for best movies recommendation by using TMDB and MovieLens datasets. Show more
Keywords: Movie recommender system, deep learning, user experience, taymon, accuracy, movie rating
DOI: 10.3233/JIFS-231041
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7675-7690, 2023
Authors: Niu, Lili
Article Type: Research Article
Abstract: As a convenient learning tool in the We Media era, mobile apps have been paid more and more attention by college students because of their accompanying timeliness and practicality. With the increasing number of English learning apps, many such apps provide college students with new ways to obtain learning resources and diversified learning modes. The related research in the field of mobile-assisted language learning at home and abroad has developed over nearly 20 years, basically following the route from theory to application in practice, but there have been few process studies on learners’ individual language skill learning behaviors based on …mobile platform data. In this study, the time series clustering method was adopted, and the learning behavior of college students in an English vocabulary learning app in China was selected for data mining. Firstly, taking the “single-day memorization amount” as the measurement index, the memorization records of college students in the whole use cycle were extracted and processed into trajectory data, and the KmL algorithm was used to cluster the trajectory of the memorization amount in the time series. According to the intra-class average trajectory, the characteristics of learning behavior changes among the different college students are summarized, and two learning modes are depicted. Secondly, through the experimental analysis, it was found that adopting the English learning model three weeks before an exam can effectively stimulate college students and improve their willingness to learn and continue using the app. Show more
Keywords: Time series clustering, English app, data mining, learning mode
DOI: 10.3233/JIFS-231476
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7691-7700, 2023
Authors: Mahaboob Basha, S.K. | Kalaiselvan, S.A.
Article Type: Research Article
Abstract: Quality of Experience (QoE) is a critical aspect of multimedia applications, which directly impacts user satisfaction and adoption. QoE predictions are used to optimize various parameters such as video quality, bitrate, and network bandwidth to enhance the user experience. However, accurate QoE prediction is a challenging task, as it involves various factors such as network conditions, video content, and user preferences. Therefore, there is a need for enhancing QoE predictions with advanced techniques to improve user satisfaction and adoption. This paper proposes incorporating more complex neural network architectures and using more diverse datasets to improve the accuracy and generalization of …Quality of Experience (QoE) predictions. The paper suggests experimenting with more advanced architectures such as convolutional neural networks and recurrent neural networks, which have been shown to be effective in various applications. Additionally, the paper highlights the limitation of using a single dataset and proposes using more diverse datasets that capture different types of video content and network conditions. Enhancing QoE predictions with complex neural networks and diverse datasets include improved accuracy, better generalization, more sophisticated models, enhanced user satisfaction and increased adoption. These enhancements are expected to lead to more accurate and reliable QoE predictions, which are crucial for improving user experience in multimedia applications. Show more
Keywords: Quality of Experience (QoE), Neural networks, multimedia applications
DOI: 10.3233/JIFS-233777
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7701-7711, 2023
Authors: Bera, Sanchari | Muhiuddin, Ghulam | Pal, Madhumangal
Article Type: Research Article
Abstract: Graph theory plays a crucial role in the era of computer science, medical science and information technology. The fundamental motivation behind this paper is to present some availability ideas in the m polar interval-valued fuzzy graph (m -PIVFG), which are utilized to portray the interval of the uncertainty of items. What’s more, the m -PIVFG graphs are utilized to portray the underlying connection between ideas in which the vertices and edges are of multi-poles and in the form of interval values to feature the uncertainty conditions. The dominating set involves a basic situation in graph analysis. This paper essentially …adds to expanding the idea of double domination in the fuzzy graph to the m -PIVFG and getting the related extended ideas of m -PIVFG. In the interim, the ways to get the particular double dominating sets are introduced. At long last, a numeral model on ambulance service on some villages information in India is introduced to clarify the necessity of double domination in m -PIVFG in the particular application. Show more
Keywords: m-PIVFG, double domination in m-PIVFG, acurate dominating set on m-PIVFG, accurate double dominating set on m-PIVFG, facility location problem
DOI: 10.3233/JIFS-223054
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7713-7726, 2023
Authors: Al-shami, Tareq M. | Hosny, Rodyna A. | Mhemdi, Abdelwaheb | Abu-Gdairi, Radwan | Saleh, Salem
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-230436
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7727-7738, 2023
Authors: Dang, Trong Hop | Do, Viet Duc | Mai, Dinh Sinh | Ngo, Long Thanh | Trinh, Le Hung
Article Type: Research Article
Abstract: In image processing, segmentation is a fundamental problem but an important step for advanced image processing problems. When dealing with hyperspectral image data, the task becomes much more challenging due to the large number of features (dimension), higher nonlinearity, and greater capacity of the data. This paper proposes a solution of features reduction collaborative fuzzy c-means clustering (FR-CFCM) for hyperspectral remote sensing image analysis using random projection. The dimensional reduction technique is based on the Johnson Lindenstrauss lemma algorithm, preserving the relative distance between data samples. This can make clustering easier without affecting the clustering results. Moreover, by reducing dimensionality …and sharing information among sub-data in collaborative clustering, it is possible to improve the performance and accuracy of hyperspectral remote sensing image analysis results. The experiments conducted on two hyperspectral image data sets with five validity indexes show that the proposed methods perform better compared with the other methods. Show more
Keywords: hyperspectral image, fuzzy clustering, collaborative clustering, feature reduction
DOI: 10.3233/JIFS-230511
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7739-7752, 2023
Authors: Lv, Qian
Article Type: Research Article
Abstract: English teaching at college levels is more sophisticated and advanced compared to high schools and professionals. The teaching must have high-quality meetings, real-world interactions, and professional applications. Therefore teaching quality evaluation periodically is performed internally and externally through skill validation and joint training. This article introduces a Regressive Fuzzy Evaluation Model (RFEM) for analyzing the quality of college classroom English teaching quality. This evaluation model operates over the teaching quality metrics such as performance, student understandability, and application. The understandability and English application to the real world is modeled by referring to the performance as the regressive factor. The regressive …factor is analyzed for two fuzzification outputs: high and low, by analyzing the individual factors over cumulative teaching grades. The regression for low fuzzy outputs is analyzed using mean understandability and application score from the previous assessment instance. This is required for training the fuzzification from the mean score rather than the low level. Therefore the quality improvements from the lagging features are addressed by providing a new teaching method. Further fuzzy regression is initiated from the mean to the high level reducing the computation time and errors. Show more
Keywords: English teaching, fuzzy logic, quality evaluation, regressive analysis
DOI: 10.3233/JIFS-231321
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7753-7767, 2023
Authors: Ju, Hongmei | Yi, Huan
Article Type: Research Article
Abstract: The classification problem is a key area of research in machine learning. The Least Squares Support Vector Machine (LSSVM) is an important classifier that is commonly used to solve classification problems. Its widespread use stems from its replacement of the inequality constraint in the Support Vector Machine (SVM) with the equality constraint, which transforms the convex quadratic programming (QP) problem of SVM into the solution of linear equations. However, when dealing with multi-class classification problems, LSSVM faces the challenges of lack of sparsity and sample noises, which can negatively impact its performance. Based on the modeling characteristics and data distribution …of the multi-class LSSVM model, this paper proposes two improvements and establishes an improved fuzzy sparse multi-class least squares support vector machine (IF-S-M-LSSVM). The first improvement adopts a non-iterative sparse algorithm, which can delete training sample points to different degrees by adjusting the sparse ratio. The second improvement addresses the impact of sample noise on determining the optimal hyperplane by adding a fuzzy membership degree based on sample density. The advantages of the new model, in terms of training speed and classification accuracy, are verified through UCI machine learning standard data set experiments. Finally, the statistical significance of the IF-S-M-LSSVM model is tested using the Friedman and Bonferroni-Dunn tests. Show more
Keywords: Least squares support vector machine, multi-class classification problem, fuzzy membership, sparse
DOI: 10.3233/JIFS-231738
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7769-7783, 2023
Article Type: Research Article
Abstract: In this paper, a sparse feature extraction method is presented based on sparse decomposition and multiple musical instrument component dictionaries to address the challenges of existing methods in component-recognition and analysis of mixed musical instrument music data. These methods, which are often dependent on data labels, and rely primarily on frequency domain or physical features, can be improved significantly using this technique. Through the in-depth analysis of the sparse coefficient vectors, this method is capable of generating independent sparse music features that are highly interpretable and have been shown to intuitively express the composition of musical instruments, and capture the …variations of emotion in the music. Consequently, this approach has great potential for application in the field of mixed musical instrument composition analysis and other time-varying signal analysis. Show more
Keywords: Feature extraction, sparse decomposition, sparse feature, hybrid instrument recognition, music time domain analysis
DOI: 10.3233/JIFS-231290
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7785-7796, 2023
Authors: Wu, Jing | Shi, Yuxin | Sheng, Yuhong
Article Type: Research Article
Abstract: Uncertain time series analysis is a method of predicting future values by analyzing imprecise observations. In this paper, the least absolute deviation (LAD) method is applied to solve for the unknown parameters of the uncertain max-autoregressive (UMAR) model. The predicted value and confidence interval of the future data are calculated using the fitted UMAR model. Moreover, the relative change rate of parameter is proposed to test the robustness of different estimation methods. Then, two comparative analyses demonstrate the LAD estimation can handle outliers better than the least squares (LS) estimation and the necessity of introducing the UMAR model. Finally, a …numerical example displays the LAD estimation in detail to verify the effectiveness of the method. The LAD estimation is also applied to a collection of actual data with cereal yield. Show more
Keywords: Uncertain time series, uncertain max-autoregressive model, least absolute deviation estimation, relative change rate
DOI: 10.3233/JIFS-232789
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7797-7809, 2023
Authors: Sangeetha, K. | Shanthini, J. | Karthik, S.
Article Type: Research Article
Abstract: Wireless sensor networks consist of a large number of randomly distributed nodes in a given area. WSN nodes are battery-powered, so they lose all their energy after a certain period and this energy constraint affects the network lifetime. This study aims to maximize network lifetime while minimizing overall energy use. In this study, a novel Energy Efficient Cluster based Adaptive Routing (ECAR) approach has been proposed for large-scale WSNs. Initially, the Genetic Bee Colony algorithm (GBCA) is introduced, which provides an effective way for selecting cluster heads based on node degrees, node centralities, distances to neighbors, and residual energy. Consequently, …the Quantum Inspired African Vulture Optimization algorithm (QIAVO) is utilized to find a routing path between the source and the destination over the cluster heads. To optimize the network performance, QIAVO considers multiple objectives, including residual energy, distance, and node degree. The proposed method is evaluated based on average packet delivery ratios, energy consumption, and average end-to-end delays. According to simulation results, the proposed protocol successfully balances the energy consumption of all sensor nodes and increases network lifespan. Show more
Keywords: Clustering, wireless sensor network, routing, energy efficiency, ECAR
DOI: 10.3233/JIFS-233445
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7811-7825, 2023
Authors: Rajarajan, S. | Kavitha, M.G.
Article Type: Research Article
Abstract: Technology development brought numerous lifestyle changes. People move around with smart gadgets and devices in the home, work environment, and familiar places. The Internet acts as a backbone for all applications and connecting multiple devices to set up a smart environment is technically termed as IoT (Internet of Things). The feature merits of IoT are explored in numerous fields from simple psychical data measurement to complex trajectory data measurement. Where the place is inaccessible to humans, IoT devices are used to analyze the region. Though IoT provides numerous benefits, due to its size and energy limitations, it faces security and …privacy issues. Intrusions in IoT networks have become common due to these limitations and various intrusion detection methods are introduced in the past decade. Existing learning-based methods lag in performance while detecting multiple attacks. Conventional detection models could not be able to detect the intrusion type in detail. The diverse IoT network data has several types of high dimensional features which could not be effectively processed by the conventional methods while detecting intrusions. Recently improvements in learning strategies proved the performance of deep learning models in intrusion detection systems. However, detecting multiple attacks using a single deep learning model is quite complex. Thus, in this research a multi deep learning model is presented to detect multiple attacks. The initial intrusion features are extracted through the AlexNet, and then essential features are selected through bidirectional LSTM. Finally, the selected features are classified using the decision tree C5.0 algorithm to attain better detection accuracy. Proposed model experimentations include benchmark NSL-KDD dataset to verify performances and compared the results with existing IDSs based on DeepNet, Multi-CNN, Auto Encoder, Gaussian mixture, Generative adversarial Network, and Convolutional Neural Network models. The proposed model attained maximum detection accuracy of 98.8% over conventional methods. Overall, an average of 15% improved detection performance is attained by the proposed model in detecting several types of intrusions in the IoT network. Show more
Keywords: Internet of Things (IoT), Intrusion detection system (IDS), deep learning, AlexNet, Bidirectional Long short-term memory (BiLSTM)
DOI: 10.3233/JIFS-233575
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7827-7840, 2023
Authors: Hou, Jundan | Liu, Qian | Dong, Qi
Article Type: Research Article
Abstract: In recent years, with the rapid growth of the public’s demand for cultural connotation and cultural taste of tourism products, promoting the rapid development of the integration of cultural tourism, the development of cultural tourism boom has been set off nationwide. Cultural tourism resources are the premise and foundation of cultural tourism development. With the rise of cultural tourism fever, the collation and excavation of the cultural connotation and cultural value of various types of cultural tourism resources around the world has entered a more in-depth stage, which undoubtedly promotes the industrial transformation and utilization of resources, but in terms …of the evaluation of the value of resources, there are more qualitative evaluations and few quantitative evaluations, which is largely due to the current academic classification of cultural tourism resources is not uniform, so that the evaluation of resources This is largely due to the difficulty of establishing the index system in the current academic community. The comprehensive value evaluation of cultural tourism resources is looked as the multiple attribute decision making (MADM) issue. In this paper, we extended the dua Hamy mean (DHM) operator and power avergae (PA) operator to 2-tuple linguistic neutrosophic sets (2TLNSs) to propose the 2-tuple linguistic neutrosophic power DHM (2TLNPDHM) operator. Finally, a decision example for comprehensive value evaluation of cultural tourism resources is employed to show the 2TLNPDHM operator. Show more
Keywords: Multiple attribute decision making (MADM), 2TLNSs, 2TLNPDHM, cultural tourism resources, comprehensive value evaluation
DOI: 10.3233/JIFS-224492
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7841-7858, 2023
Authors: Ji, YingZhou | Niuo, Qiang
Article Type: Research Article
Abstract: High-performance concrete performs better than normal concrete because of using additional components than usual concrete components. Several artificially based analytics were used to evaluate the compressive strength (CS) of high-performance concrete (HPC) made with fly ash and blast furnace slag. In the present research, the Aquila optimizer (AO) was used to find the best values for the determinants of the adaptive neuro-fuzzy inference system (ANFIS), and radial basis function neural network (RBFNN) that may be changed to enhance performance. The suggested approaches were established using 1030 tests, eight inputs (a primary component of mix designs, admixtures, aggregates, and curing age), …and the CS as the forecasting objective. The results of the outperformed model were then contrasted with those found in the existing scientific literature. Calculation results point to the potential benefit of combining AO-RBFNN and AO-ANFIS study. The AO-ANFIS demonstrated significantly higher R 2 (Train: 0.9862, Test: 0.9922) and lower error metrics (such as: RMSE at 2.1434 (train) and 1.2763 (Test)) when compared to the AO-RBFNN and previously published articles. In summation, the proposed method for determining the CS of HPC supplemented with blast furnace slag and fly ash may be established using the suggested AO-ANFIS analysis. Show more
Keywords: High-performance concrete, estimation; artificial intelligence, ANFIS, optimization algorithm
DOI: 10.3233/JIFS-230374
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7859-7873, 2023
Authors: Wang, Shu | Wei, Nan | Zhu, Jie | Xu, Qinzheng
Article Type: Research Article
Abstract: Various fluid mechanics software, due to inherent factors such as algorithms and boundary conditions, cannot quickly simulate 3D flow fields in batches, and the calculation of each model still takes a lot of time.In order to realize the rapid prediction of the three-dimensional flow field around the airfoil, this paper uses a new SDF geometric expression to describe the shape of the airfoil, and combines the prediction accuracy of the velocity and pressure channels, and proposes a two-stage Unet3d convolution prediction model based on the SDF expression, which greatly improves the prediction accuracy of the pressure channel.In addition, the introduced …two-stage convolutional network is optimized by combining lightweight network and attention mechanism. On the premise of ensuring the accuracy of the network, it can effectively reduce the parameters of the network model and improve the operating efficiency of the network. The two-stage method was tested on the Naca0012 and RAE2822 three-dimensional datasets, and the average accuracy rates were 95.44% and 98.22% respectively, which were 2 to 3 percentage points higher than the original method. Show more
Keywords: deep learning, 3D flow field prediction, lightweight network, two-stage convolution, attention mechanism
DOI: 10.3233/JIFS-230692
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7875-7892, 2023
Authors: Shen, Xiajiong | Yang, Huijing | Hu, Xiaojie | Qi, Guilin | Shen, Yatian
Article Type: Research Article
Abstract: Aspect-based sentiment analysis (ABSA) aims to predict the sentiment polarity of a specified aspect in a sentence. Graph neural networks (GNN) based on dependency trees have been shown to be effective for ABSA by explicitly modeling the connection between aspect and opinion terms and exploiting local semantic and syntactic information in the sentence. However, most previous works have overlooked the use of global dependency information. In this paper, we propose a novel Graph Convolutional Network (GCN) with an Interactive Memory Fusion (IMF) mechanism (IMF-GCN) that incorporates both global and local structural information for aspect-based sentiment classification. The IMF mechanism efficiently …fuses global and local structural dependency information by assigning different weights to global and local dependency modules. Syntactic constraints are also imposed to prevent the graph convolution propagation unrelated to the target words, further improving the model’s performance. The evaluation metrics used in the paper are accuracy and macro-average F1 scores, and the proposed approach achieves optimal results on three datasets with F1 scores of 79.60%, 82.19%, and 77.75%, which outperform the baseline model. Show more
Keywords: Aspect-based sentiment analysis, GNN, dependency tree, GCN, interactive memory fusion
DOI: 10.3233/JIFS-230703
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7893-7903, 2023
Authors: Zhang, Ping | Lv, Wangyong | Zhang, Ce | Song, Jiacheng
Article Type: Research Article
Abstract: Probabilistic interval-valued intuitionistic hesitant fuzzy sets (PIVIHFSs) can well describe the evaluation information of decision-makers (DMs) in multi-attribute decision-making (MADM) problems. However, PIVIHFSs only depict the situation where both membership and non-membership information occur with equal probability while ignoring the situations of non-equal possibility due to DMs’ subjective preferences. In this paper, we develop dual probabilistic interval-valued intuitionistic hesitant fuzzy sets (DPIVIHFSs) concept based on the truncated normal distribution. The DPIVIHFSs overcome the shortcomings of PIVIHFSs and are more interpretable. Then, the operations and ranking method of DPIVIHFSs are introduced. Furthermore, we study MADM methods in dual probabilistic interval-valued intuitionistic …hesitant fuzzy environments by aggregation operators (AOs). We propose a series of AOs including the DPIVIHF heronian mean (DPIVIHFHM) operator and the DPIVIHF weighted heronian mean (DPIVIHFWHM) operator. The basic properties of the presented are discussed and proved. Finally, a novel method for solving the MADM problem is proposed based on the DPIVIHFWHM operator and a numerical example of express company selection strategy is used to illustrate the effectiveness of the method. The proposed method in this article can capture more fuzzy and uncertain information when solving MADM problems and have a wider application range. Show more
Keywords: Multi-attribute decision-making, DPIVIHFS, truncated normal distribution, DPIVIHFWHM, express company selection strategy
DOI: 10.3233/JIFS-231146
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7905-7920, 2023
Authors: Sun, Peixi | Cui, Tong | Qi, Shixin
Article Type: Research Article
Abstract: Corporate culture is the sum of corporate values, systems, and behavioral norms formed in the long-term survival and development of an enterprise. It is the long-term accumulation of consensus among all employees in the enterprise. In the context of today’s global economic integration trend, the role of corporate culture construction in promoting enterprise development, improving business performance, and enhancing internal cohesion and external competitiveness is becoming increasingly significant. How to strengthen the construction of corporate culture and establish excellent corporate culture is increasingly receiving widespread attention from the academic and business communities. The comprehensive evaluation of corporate cultural competitiveness is …regarded as multi-attribute decision-making (MADM). The 2TLNSs are employed as a useful tool for characterizing uncertain information during the comprehensive evaluation of corporate cultural competitiveness. In this paper, the dual Hamy mean (DHM) and the power average (PA) are connected with 2-tuple linguistic neutrosophic sets (2TLNSs) to propose the 2-tuple linguistic neutrosophic numbers power weighted DHM (2TLNPWDHM) operator. Then, use the 2TLNPWDHM operator to handle MADM with 2TLNS. Finally, taking the comprehensive evaluation of corporate cultural competitiveness as an example, the proposed method is explained. The main contributions of this study are summarized: the establishment of the 2TLNPWDHM operator; (2) The 2TLNPWDHM operator was developed to handle MADM with 2TLNS; (3) Through the empirical application of the comprehensive evaluation of corporate cultural competitiveness, the proposed method is validated; (4) Some comparative studies have shown the rationality of the 2TLNPWDHM operator. Show more
Keywords: Multi-attribute decision making (MADM), neutrosophic numbers, 2-tuple linguistic neutrosophic sets (2TLNSs), 2TLNPWDHM operator, corporate cultural competitiveness
DOI: 10.3233/JIFS-232024
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7921-7937, 2023
Authors: Sasirekha, N. | Poonguzhali, I. | Shekhar, Himanshu | Vimalnath, S.
Article Type: Research Article
Abstract: The image of liver which is the area of interest in this work is obtained from abdominal CT scan. It also contains details of other abdominal organs such as pancreas, spleen, stomach, gall bladder, intestine etc. Since all these organs are of soft tissues, the pixel intensity values differ marginally in the CT scan output and the organs overlap each other at their boundaries. Hence it is very difficult to trace out the exact contour of liver and liver tumor. The overlapping and obscure boundaries are to be avoided for proper diagnosis. Image segmentation process helps to meet this requirement. …The normal perception of the CT image can be improved by suitable segmentation techniques. This will help the physician to extract more information from the image and give an accurate diagnosis and better treatment. The projected images are processed using the Partial Differential Technique (PDT) to isolate the liver from the other organs. The Level Set Methodology (LSM) is then used to separate the cancerous tissue from the healthy tissue around it. The classification of stages may be done with the assistance of an Enhanced Convolutional Classifier. The classification of LSM is evaluated by producing many metrics of accuracy, sensitivity, and specificity using an Improved Convolutional classifier. Compared to the two current algorithms, the proposed technique has a sensitivity and specificity of 96% and 93%, respectively, with 95% confidence intervals of [0.7513 1.0000] and [0.7126 1.0000] for sensitivity, and specificity respectively. Show more
Keywords: Liver cancer, improved convolutional classifier, level set methodology, partial differential technique, accuracy
DOI: 10.3233/JIFS-232218
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7939-7955, 2023
Authors: Megala, A. | Veeramani, C.
Article Type: Research Article
Abstract: Researchers in science and engineering face various obstacles due to a lack of specific and full data. Many different approaches have been devised to deal with these restrictive requirements, but two notable schools of thought are the fuzzy set (FS) theory and the rough set (RS) theory, both of which have spawned many extensions and hybridizations. Although RS theory originated from an indiscernibility relation (also known as an equivalence relation in mathematics), emphasis rapidly shifted to similarity or coverings (and their fuzzy analogues). Many other hybrid schemes were suggested with this goal in mind. The gap between those concepts shrank …because to this thorough analysis. Fuzzy set theory is a legitimate way to convey the ambiguity of assessment data, yet it is still inadequate for dealing with certain intricate problems in the actual world. In reality, decision makers will undoubtedly provide different kinds of ambiguous and nuanced assessments. Atanassov’s intuitionistic fuzzy set theory broadened the application of fuzzy set theory by imbuing it with an element of uncertainty. Sometimes in real life, you have to deal with a neutral element on top of the indeterminate one. Picture fuzzy sets were developed specifically for this purpose. Membership roles may be positive, neutral, or negative/refusal. In contrast, hesitant fuzzy sets and its hybrid models are useful when decision makers are on the fence about which option to choose. As a binary relation on a set, a graph is symmetric. It is a staple in mathematical modelling and is used in almost every scientific and technological discipline. Graph theory has been essential in the mathematical modelling and subsequent resolution of several real-world situations. Information about connections between things is often best represented using graph theory, which uses vertices to stand in for the items and edges for the relationships between them. The suggested dynamic algorithm is better to the static approach in dealing with the multidimensional dynamic changes of the hybrid incomplete decision system, according to a series of experiments carried out on nine UCI datasets. Show more
Keywords: Intuitionistic fuzzy set theory, graph theory, rough set theory, varying object sets and values
DOI: 10.3233/JIFS-232314
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7957-7974, 2023
Authors: Huang, Zhen | Gao, Feng | Li, Xuesong | Jiang, Min
Article Type: Research Article
Abstract: The static risk assessment method has difficulty tracking variations of the risk level, which is not conducive to the dynamic control of construction. Tunnel collapse during the construction of mountain tunnels has a dynamic evolution law and contains great risk of harm, and the corresponding dynamic risk assessment is extremely important. This study proposes a static and dynamic fuzzy uncertainty assessment method for the collapse risk of mountain tunnels. First, 150 tunnel collapse accidents were investigated and analysed, and the static and dynamic risk assessment index system of mountain tunnel construction collapse was established. Second, the DEMATEL method is processed …by applying fuzzy logic, the subjective weight of each index is calculated, and the interaction between the indexes is analysed. Finally, the traditional VIKOR method is improved upon, and the weight of each assessment index is coupled and analysed. A static and dynamic uncertainty assessment model of the construction collapse risk of multiple construction sections is constructed. This method has been successfully applied to the risk assessment of tunnel collapse, and the assessment results are consistent with the actual construction situation. This study provides a new method for the static and dynamic assessment of mountain tunnel collapse risk. Show more
Keywords: Mountain tunnel, collapse, risk assessment, VIKOR method, DEMATEL method, Uncertainty analysis
DOI: 10.3233/JIFS-233149
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7975-7999, 2023
Authors: Narayanan, M. Badri | Ramesh, Arun Kumar | Gayathri, K.S. | Shahina, A.
Article Type: Research Article
Abstract: Fake news production, accessibility, and consumption have all increased with the rise of internet-connected gadgets and social media platforms. A good fake news detection system is essential because the news readers receive can affect their opinions. Several works on fake news detection have been done using machine learning and deep learning approaches. Recently, the deep learning approach has been preferred over machine learning because of its ability to comprehend the intricacies of textual data. The introduction of transformer architecture changed the NLP paradigm and distinguished itself from recurrent models by enabling the processing of sentences as a whole rather than …word by word. The attention mechanisms introduced in Transformers allowed them to understand the relationship between far-apart tokens in a sentence. Numerous deep learning works on fake news detection have been published by focusing on different features to determine the authenticity of a news source. We performed an extensive analysis of the comprehensive NELA-GT 2020 dataset, which revealed that the title and content of a news source contain discernible information critical for determining its integrity. To this objective, we introduce ‘FakeNews Transformer’ — a specialized Transformer-based architecture that considers the news story’s title and content to assess its veracity. Our proposed work achieved an accuracy of 74.0% on a subset of the NELA-GT 2020 dataset. To our knowledge, FakeNews Transformer is the first published work that considers both title and content for evaluating a news article; thus, we compare the performance of our work against two BERT and two LSTM models working independently on title and content. Our work outperformed the BERT and LSTM models working independently on title by 7.6% and 9.6% , while performing better than the BERT and LSTM models working independently on content by 8.9% and 10.5% , respectively. Show more
Keywords: Fake news detection, FakeNews transformer, transformer encoder, NELA-GT 2020
DOI: 10.3233/JIFS-223980
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8001-8013, 2023
Authors: Zhenlin, Wei | Chuantao, Wang | Xuexin, Yang | Wei, Zhao
Article Type: Research Article
Abstract: The purpose of sentiment classification is to accomplish automatic judssssgment of the sentiment tendency of text. In the sentiment classification task of online reviews, traditional models focus on the optimization of algorithm performance, but ignore the imbalanced distribution of the number of sentiment classifications of online reviews, which causes serious degradation in the classification performance of the model in practical applications. The experiment was divided into two stages in the overall context. The first stage trains SimBERT using online review data so that SimBERT can fully learn the semantic features of online reviews. The second stage uses the trained SimBERT …model to generate fake minority samples and mix them with the original samples to obtain a distributed balanced dataset. Then the mixed data set is input into the deep learning model to complete the sentiment classification task. Experimental results show that this method has excellent classification performance in the sentiment classification task of hotel online reviews compared with traditional deep learning models and models based on other imbalanced processing methods. Show more
Keywords: Sentiment classification, imbalance classification, deep learning, BERT, SimBERT
DOI: 10.3233/JIFS-230278
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8015-8025, 2023
Authors: Xia, Yan | Yu, Shun | Jiang, Liu | Wang, Liming | Lv, Haihua | Shen, Qingze
Article Type: Research Article
Abstract: Power system load forecasting is a method that uses historical load data to predict electricity load data for a future time period. Aiming at the problems of general prediction accuracy and slow prediction speed in using typical machine learning methods, an improved fuzzy support vector regression machine method is proposed for power load forecasting. In this method, the boundary vector extraction technique is employed in the design of the membership function for fuzzy support vectors to differentiate the importance of different samples in the regression process. This method utilizes a membership function based on boundary vectors to assign differential weights …to different sample points that used to differentiate the importance of different types of samples in the regression analysis process in order to improve the accuracy of electricity load prediction. The key parameters of the fuzzy support vector regression model are optimized, further enhancing the precision of the forecasting results. Simulation experiments are conducted using real power load data sets, and the experimental results demonstrate the effectiveness of the proposed method in terms of accuracy and speed in predicting power load data compared to other prediction models. This method can be widely applied in real power production and scheduling processes. Show more
Keywords: Machine learning, fuzzy support vector regressive machine, power load prediction, membership function, boundary vector
DOI: 10.3233/JIFS-230589
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8027-8048, 2023
Authors: Zhang, Ruihua | Han, Meng | He, Feifei | Meng, Fanxing | Li, Chunpeng
Article Type: Research Article
Abstract: In recent years, there has been an increasing demand for high utility sequential pattern (HUSP) mining. Different from high utility itemset mining, the “combinatorial explosion” problem of sequence data makes it more challenging. This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods of HUSP from a novel perspective. Firstly, from the perspective of serial and parallel, the data structure used by the mining methods are illustrated and the pros and cons of the algorithms are summarized. In order to protect data privacy, many HUSP hiding algorithms have been proposed, which are classified into array-based, …chain-based and matrix-based algorithms according to the key technologies. The hidden strategies and evaluation metrics adopted by the algorithms are summarized. Next, a taxonomy of the most common and the state-of-the-art approaches for incremental mining algorithms is presented, including tree-based and projection-based. In order to deal with the latest sequence in the data stream, the existing algorithms often use the window model to update dynamically, and the algorithms are divided into methods based on sliding windows and landmark windows for analysis. Afterwards, a summary of derived high utility sequential pattern is presented. Finally, aiming at the deficiencies of the existing HUSP research, the next work that the author plans to do is given. Show more
Keywords: Survey, high utility sequential patterns, incremental data, data streams, hidden patterns
DOI: 10.3233/JIFS-232107
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8049-8077, 2023
Authors: Wu, Xiaopeng
Article Type: Research Article
Abstract: In wireless-sensing networks (WSNs), the energy economy has lately emerged as the main problem. Since sensor networks run on batteries, they eventually run out of power. To increase the packet transmission ratio for sensing devices, it becomes more difficult to enhance data loss in an energy-efficient manner. In WSNs, the mobile drain causes high network energy usage and data delay. This paper suggests an Improved Ant Colony Clustering-Based Data Transmission Algorithm (EACODT) that first develops the network nodes’ energy density function before allocating sensing nodes with higher residual energy as cluster leaders using the energy density function. The EACODT is …thoroughly modeled for different WSN situations with variable numbers of sensing nodes and CHs, and the findings are contrasted with some recently developed meta-heuristic algorithms. As a consequence, it is discovered that EACODT gets 34% of energy usage, 98.8% of network lifespan, 95% of packet delivery ratio, 854 kbps of transmission, and a 98% convergence rate. Show more
Keywords: Wireless sensor networks, optimization, energy efficiency, packet delivery, data transmission
DOI: 10.3233/JIFS-232295
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8079-8089, 2023
Authors: Zhao, Xiao-Rui | Wang, Jie-Sheng | Bao, Yin-Yin | Hou, Jia-Ning | Ma, Xin-Ru | Li, Yi-Xuan
Article Type: Research Article
Abstract: Wild Horse Optimizer (WHO) is a population-based metaheuristic algorithm inspired by animal behavior, which mainly imitates the decent behavior, grazing behavior, mating behavior and leadership dominance behavior of wild horses in nature to find the optimal. The initialization of the population by imitating the behavior of wild horses is prone to uneven distribution of population positions, and its position updating method is prone to local optimal problems while improving the efficiency of the search. In order to enhance the population diversity and to break out of the local optimum, an adaptive weighted wild horse optimizer based on backward learning and …small-hole imaging strategy is proposed. The backward learning strategy is used to enhance the population diversity and improve the uneven distribution of individuals; The adaptive weight and small-hole imaging strategy are added to the local search strategy to improve the global search ability and jump out of the local optimum. To verify the effectiveness of the proposed algorithm, simulation experiments were conducted by using 23 benchmark test functions to test the search ability and Whale Optimization Algorithm (WOA), Moth-Flame Optimization (MFO), Rat Swarm Optimizer (RSO) and Multi-Verse Optimizer (MVO) algorithms are compared in terms of their search performance, and finally four real engineering design problems are solved. The simulation results indicate that the proposed FHPWHO has excellent merit-seeking capability. Show more
Keywords: Wild horse optimizer, inverse learning, adaptive weights, small-hole imaging strategy, function optimization, engineering optimization
DOI: 10.3233/JIFS-232342
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8091-8117, 2023
Authors: Cao, Jiangzhong | Liao, Siyi
Article Type: Research Article
Abstract: 3D shape recognition is a critical research topic in the field of computer vision, attracting substantial attention. Existing approaches mainly focus on extracting distinctive 3D shape features; however, they often neglect the model’s robustness and lack refinement in deep features. To address these limitations, we propose the point-view fusion attention network that aims to extract a concise, informative, and robust 3D shape descriptor. Initially, our approach combines multi-view features with point cloud features to obtain accurate and distinguishable fusion features. To effectively handle these fusion features, we design a dual-attention convolutional network which consists of a channel attention module and …a spatial attention module. This dual-attention mechanism greatly enhances the generalization ability and robustness of 3D recognition models. Notably, we introduce a strip-pooling layer in the channel attention module to refine the features, resulting in improved fusion features that are more compact. Finally, a classification process is performed on the refined features to assign appropriate 3D shape labels. Our extensive experiments on the ModelNet10 and ModelNet40 datasets for 3D shape recognition and retrieval demonstrate the remarkable accuracy and robustness of the proposed method. Show more
Keywords: 3D Shape recognition, multimodal feature fusion, feature refinement, attention mechanism
DOI: 10.3233/JIFS-232800
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8119-8133, 2023
Authors: Huang, Hangxing | Ma, Lindong
Article Type: Research Article
Abstract: In late 2019, coronavirus disease (COVID-19) began to spread globally and is highly contagious. Due to its exceptionally rapid spread and high mortality rate, it is not yet possible to be eradicated. In order to halt the spread of COVID-19, there is a pressing need for effective screening of infected patients and immediate medical intervention. The absence of rapid and accurate methods to identify infected patients has led to a need for a model for early diagnosis of patients with and suspected of having COVID-19 to reduce the probability of missed diagnosis and misdiagnosis. Modern automatic image recognition techniques are …an important diagnostic method for COVID-19. The aim of this thesis is to propose a novel deep learning technique for the automatic diagnosis and recognition of coronavirus disease (COVID-19) on X-ray images using a transfer learning approach. A new dataset containing COVID-19 information was created by merging two publicly available datasets. This dataset includes 912 COVID-19 images, 4273 pneumonia images, and 1583 normal chest X-ray images. We used this dataset to train and test the deep learning algorithm. With this new dataset, two pre-trained models (Xception and ResNetRS50) were trained and validated using transfer learning techniques. 3-class images were identified (Pneumonia vs. COVID-19 vs. Normal), and the two models generated validation accuracies of 90% and 97.21%, respectively, in the experiments. This demonstrates that our proposed algorithm can be well applied in diagnosing patients with lung diseases. In this study, we found the ResNetRS50 model to be superior. Show more
Keywords: ResNetRS50, deep learning, X-ray images, transfer learning, COVID-19
DOI: 10.3233/JIFS-232866
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8135-8144, 2023
Authors: Yao, Jingkun | Guo, Beibei | Pang, Zheng
Article Type: Research Article
Abstract: In order to improve the coordinated control effect of hierarchical power balance of new energy microgrid, this paper applies fuzzy control method to this system, and proposes a hierarchical control strategy based on event-triggered communication. Each DG is regarded as a proxy, and the continuous actual value of output is replaced by the state prediction value. Moreover, two different event trigger condition functions for frequency and voltage are designed based on Lyapunov method respectively. At the same time, each DG only communicates with its neighbor DG aperiodic at the event trigger time, and finally all DG are restored to the …reference value provided by the virtual leader. Finally, this paper constructs a coordinated fuzzy control simulation system for hierarchical power balance of new energy microgrid. Combined with the simulation results, the method proposed in this paper is feasible. Show more
Keywords: New energy, microgrid, hierarchical power, balance, fuzzy control
DOI: 10.3233/JIFS-232963
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8145-8158, 2023
Authors: Natarajan, Kirthika | Chelliah, Jeyalakshmi | Mariyarose, Jemin Vijayaselvan | Andi, Senthilkumar | Venkatachalam, Bharathi | Alagarsamy, Manjunathan
Article Type: Research Article
Abstract: This is contrary for Voice impaired people since their speech is tough for others to recognize even by their parents and teachers. Provided if their parents are illiterate. So our TTS system can be used for converting their written text to speech for their illiterate parents and friends around them. Though many methods have been adopted for the concatenation of the basic sound units, the HMM-based approach in modeling the sound is utilized by many researchers in many languages. In this paper, we have tried to implement, text to speech systems of synthesis for a Tamil text uses a phonemic …concatenation approach in MATLAB. Instead of utilizing Tamil letters as it is, due to its difficulty in production, Tamil text is transliterated into English then it is converted into intelligible speech. The performance of the output is verified for various examples by changing its parameters, in which the quality of the sound is comparable to that of English text. So the proposed system is utilized for all languages other than Tamil also if it is properly transliterated for limited vocabulary. Show more
Keywords: Phoneme, text normalization, voice impaired, subharmonic ratio, pitch, transliteration
DOI: 10.3233/JIFS-231680
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8159-8169, 2023
Authors: Syed Anwar Hussainy, F. | Thillaigovindan, Senthil Kumar | Sabhanayagam, T.
Article Type: Research Article
Abstract: The present growth in Internet of Medical Things (IoMT) and Artificial Intelligence (AI) paved a way for advanced healthcare systems from conventional methods. The integration of AI and IoMT provides varied chances in medical domain. With that concern, the proposed model derives a novel model for Heart Disease Prediction (HDP), incorporates IoMT and AI. The proposed model comprises of different phases of functions, as, data collection, data preparation, feature optimization and selection, classification. IoMT devices include medical or wearable sensors are used for continuous collection of medical statistics while machine learning model process the data for disease prediction. Here, a …new feature selection model called Enhanced Binary Particle Swarm Optimization (EBPSO) for reducing joint feature selection problems. With the extracted features, classification is performed with Cascaded Long Short Term Memory (CLSTM) model for attaining better accuracy of medical data classification. During evaluation, the proposed HDP model achieved the maximal accuracy in disease prediction. Hence, the model can be effectively used for diagnosing heart disease in Smart Healthcare Models. Show more
Keywords: Internet of medical things, Artificial Intelligence, Enhanced Binary Particle Swarm Optimization, machine learning, Heart Disease
DOI: 10.3233/JIFS-232517
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8171-8180, 2023
Authors: Wang, Lu
Article Type: Research Article
Abstract: In recent years, due to the further development of the market economy, the internal competition in the large-cargo transportation industry has become increasingly fierce, and the profit space has been greatly compressed. Therefore, large-cargo logistics enterprises are paying more and more attention to the research of highway transportation route plan. The highway transportation scheme selection is looked as the multi-attribute decision-making (MADM). In this paper, the triangular fuzzy neutrosophic numbers (TFNN) grey relational analysis (TFNN-GRA) method is established based on the classical grey relational analysis (GRA) and triangular fuzzy neutrosophic sets (TFNSs) with completely unknown weight information. In order to …obtain the weight values, the information Entropy is established to obtain the weight values based on the score and accuracy functions under TFNSs. Then, combining the traditional fuzzy GRA model with TFNSs information, the TFNN-GRA method is set up and the computing steps for MADM are established. Finally, a numerical example for highway transportation scheme selection was established and some comparisons are established to study the advantages of TFNN-GRA. The main contributions of this paper are established as follows: (1) the information Entropy is established to obtain the weight values based on the score and accuracy functions under TFNSs; (2) the TFNN-GRA method is established with completely unknown weight information. (2) the TFNN-GRA method is established and the computing steps for MADM are established. (3) Finally, a numerical example for highway transportation scheme selection was established and some comparisons is employed to study advantages of TFNN-GRA method. Show more
Keywords: Multiple attribute decision making (MAGDM) problems, triangular fuzzy neutrosophic sets (TFNSs), GRA method; highway transportation scheme selection
DOI: 10.3233/JIFS-233620
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8181-8195, 2023
Authors: Dawlet, Omirzhan | Bao, Yan-Ling
Article Type: Research Article
Abstract: As dual hesitant fuzzy sets can express the uncertainty of data efficiently, the aggregation of dual hesitant fuzzy information plays an important role in both theory and application. However, some existing dual hesitant fuzzy aggregation operators are not rigorous enough actually. In this note, we show that some theorems in an earlier paper by Ju et al. [1 ] (Journal of Intelligent & Fuzzy Systems 27 (2014) 2481–2495) are not correct, i.e., the dual hesitant fuzzy Hamacher weighted averaging operator (DHFHWA) and some other aggregation operators proposed by Ju et al. don’t satisfy idempotency and boundedness. Therefore, the purpose of …this paper is to make researchers aware of that some aggregation operators in literature [1 ] are flawed and limited for many applications. Show more
Keywords: Dual hesitant fuzzy set, Aggregation operator, Idempotency
DOI: 10.3233/JIFS-230764
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8197-8201, 2023
Authors: Chandra Murty, Patnala S.R. | Anuradha, Chinta | Appala Naidu, P. | Balaswamy, C. | Nagalingam, Rajeswaran | Jagatheesaperumal, Senthil Kumar | Ponnusamy, Muruganantham
Article Type: Research Article
Abstract: This study quantifies individual stress levels through real-time analysis of wearable sensor data. An embedded setup utilizes artificial neural networks to analyze R-R intervals and Heart Rate Variability (HRV). Emotion recognition of happiness, sadness, surprise, fear, and anger is explored using seven normalized HRV features. Statistical analysis and classification with a neural network model are performed on approximately 20,700 segments,with participants within the age ranged from 23 to 40, mixed gender, and normal health status, along with other pertinent demographics included. Findings show stress observation’s potential for mental well-being and early detection of stress-related disorders. Three classification algorithms (LVQ, BPN, …CART) are evaluated, comparing ECG signal correlation features with traditional ones. BPN achieves the highest emotional recognition accuracy, surpassing LVQ by 5.9% – 8.5% and CART by 2% – 6.5%. Maximum accuracy is 82.35% for LVQ and 97.77% for BPN, but does not exceed 95%. Using only 72 feature sets yields the highest accuracy, surpassing S1 by 17.9% – 20.5% and combined S1/S2 by 11% – 12.7%. ECG signal correlation features outperform traditional features, potentially increasing emotion recognition accuracy by 25%. This study contributes to stress quantification and emotion recognition, promoting mental well-being and early stress disorder detection. The proposed embedded setup and analysis framework offer real-time monitoring and assessment of stress levels, enhancing health and wellness. Show more
Keywords: Psychological behavior, stress monitoring, artificial neural networks, wearable embedded sensors, heart rate variability, ECG
DOI: 10.3233/JIFS-233791
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8203-8216, 2023
Authors: Dutta, Kusumika Krori | Manohar, Premila | Indira, K.
Article Type: Research Article
Abstract: Although epilepsy is one of the most prevalent and ancient neurological disorder, but, still difficult to identify the specific type of seizure, due to artefacts, noise, and other disturbances, because of acquisition of Scalp EEG. It necessitating the use of skilled medical professionals as incorrect diagnosis lead to wrong Anti Seizure Drug (ASDs) and face it’s side effects. On the other hand machine learning plays a crucial role in seizure detection by analyzing and identifying patterns in brain activity data that are indicative of seizures. It can be used to develop predictive models that can detect the onset of seizures …in real-time, allowing for early intervention and improved patient outcomes. Most of the research work focuses on seizure detection using various machine learning techniques pre-processed by different mathematical models. But, very less attention is paid towards seizure type detection. In this study, multiple Machine and Deep Learning algorithms were used in conjunction with time-domain and frequency-domain pre-processing to classify epileptic seizures into multiple types. The ictal period of various seizure types were extracted from Temple University Hospital EEG (TUHEEG) and the pre-processed data was tried out with multiple classifiers, including support vector classifiers (SVC), K- Nearest Neighbor (KNN), and Long short term memory (LSTM), among others. By using SVM, KNN, and LSTM, multiclass classification of seven types of epileptic seizures with 19 channels were considered for each EEG data and a 75–25 train–test ratio was accomplished with 90.41%, 94.46%, and 86.2% accuracy respectively. Epileptic seizure’s ictal phase EEG signals are categorized using a variety of machine learning(ML) and deep learning(DL) methods after being pre-processed using time domain and frequency domain approaches. The KNN yields the best results of all. Show more
Keywords: Seizure classification, TUHEEG, ABSZ, CPSZ, FNSZ, GNSZ, SPSZ, TNSZ, TCSZ, SVM, KNN, LSTM, EEG
DOI: 10.3233/JIFS-224570
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8217-8226, 2023
Authors: Mahalingam, Priyadarshini | Kalpana, D. | Thyagarajan, T.
Article Type: Research Article
Abstract: This paper disseminates an extra dimension of substantial analysis demonstrating the trade-offs between the performance of Parametric (P) and Non-Parametric (NP) classification algorithms when applied to classify faults occurring in pneumatic actuators. Owing to the criticality of the actuator failures, classifying faults accurately may lead to robust fault tolerant models. In most cases, when applying machine learning, the choice of existing classifier algorithms for an application is random. This work, addresses the issue and quantitatively supports the selection of appropriate algorithm for non-parametric datasets. For the case study, popular parametric classification algorithms namely: Naïve Bayes (NB), Logistic Regression (LR), Linear …Discriminant Analysis (LDA), Perceptron (PER) and non-parametric algorithms namely: Multi-Layer Perceptron (MLP), k Nearest Neighbor (kNN), Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF) are implemented over a non-parametric, imbalanced synthetic dataset of a benchmark actuator process. Upon using parametric classifiers, severe adultery in results is witnessed which misleads the interpretation towards the accuracy of the model. Experimentally, about 20% improvement in accuracy is obtained on using non-parametric classifiers over the parametric ones. The robustness of the models is evaluated by inducing label noise varying between 5% to 20%. Triptych analysis is applied to discuss the interpretability of each machine learning model. The trade-offs in choice and performance of algorithms and the evaluating metrics for each estimator are analyzed both quantitatively and qualitatively. For a more cogent reasoning through validation, the results obtained for the synthetic dataset are compared against the industrial dataset of the pneumatic actuator of the sugar refinery, Development and Application of Methods for Actuator Diagnosis in Industrial Control Systems (DAMADICS). The efficiency of non-parametric classifiers for the pneumatic actuator dataset is well proved. Show more
Keywords: Parametric classifiers, non-parametric classifiers, trade-offs, pneumatic actuator, DAMADICS, accuracy, interpretability
DOI: 10.3233/JIFS-231026
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8227-8247, 2023
Authors: Yan, Zhenggang
Article Type: Research Article
Abstract: With the continuous deepening of the construction of urban-rural economic integration in China, rural construction activities supported by rural revitalization strategies have changed the development thinking of rural economy. While implementing the goal of rural ecological economy, optimizing the rural living environment has become one of the important contents of rural revitalization, including the planning and design of rural landscapes. Rural landscape planning and design need to comprehensively consider the adaptability of landscape and rural ecological environment, emphasize the impact of rural spatial structure differences on landscape planning and design, and achieve scientific and humanized landscape planning and design, thereby …creating a more warm, natural, and comfortable rural living space. The quality evaluation of tourism rural landscape planning and design is a multiple attribute group decision making (MAGDM) problems. Recently, the TODIM (an acronym in Portuguese of interactive and multicriteria decision making) and VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) method has been inaugurated to cope with MAGDM issues. The 2-tuple linguistic neutrosophic sets (2TLNSs) are inaugurated as a effective tool for characterizing uncertain information during the quality evaluation of tourism rural landscape planning and design. In this paper, the 2-tuple linguistic neutrosophic TODIM-VIKOR (2TLN-TODIM-VIKOR) method is inaugurated to solve the MAGDM under 2TLNSs. In the end, a numerical case study for quality evaluation of tourism rural landscape planning and design is inaugurated to confirm the proposed method. Show more
Keywords: Multiple attribute group decision making (MAGDM), 2-tuple linguistic neutrosophic sets (2TLNSs), TODIM, VIKOR, tourism rural landscape planning and design
DOI: 10.3233/JIFS-231400
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8249-8261, 2023
Authors: Malavath, Pallavi | Devarakonda, Nagaraju
Article Type: Research Article
Abstract: A crucial component of human-computer interaction is 3D hand posture assessment. The most recent advancements in computer vision have made estimating 3D hand positions simpler by using deep sensors. The main challenge still stems from unrealistic 3D hand poses because the existing models only use the training dataset to learn the kinematic rules, which is ambiguous, and it is a difficult task to estimate realistic 3D hand poses from datasets because they are not free from anatomical errors. The suggested model in this study is trained using a closed-form expression that encodes the biomechanical rules, thus it does not entirely …reliant on the pictures from the annotated dataset. This work also used a Single Shot Detection and Correction convolutional neural network (SSDC-CNN) to handle the issues in imposing anatomically correctness from the architecture level. The ResNetPlus is implemented to improve representation capability with enhanced the efficiency of error back-propagation of the network. The datasets of the Yoga Mudras, like HANDS2017, and MSRA have been used to train and test the future model. As observed from the ground truth the previous hand models have many anatomical errors but, the proposed hand model is anatomically error free hand model compared to previous hand models. By considering the ground truth hand pose, the recommended hand model has shown good accuracy when compared to the state-of-art hand models. Show more
Keywords: Biomechanical constraints, Anatomical correction, single-shot detection and correction CNN, 3-Dimensional hand pose estimation
DOI: 10.3233/JIFS-231779
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8263-8277, 2023
Authors: Chen, Dongning | Liu, Jitao | Yao, Chengyu | Ma, Lei | Wang, Kuantong | Zhou, Ziyu | Wu, Xuefei | Chen, Yanan
Article Type: Research Article
Abstract: The lack of effective failure correlation analysis is one main reason for the gap between the reliability models and the actual complex systems with mixed static and dynamic characteristics. Takagi and Sugeno (T-S) dynamic fault tree is one powerful tool to analyze the static and dynamic failure logic relationship but it assumes the failure probability of the event is independent. Therefore, this paper proposes a multi-dimensional T-S dynamic fault tree analysis method involving failure correlation. The method integrates the failure probability distribution function of basic events with multi-factors and the multi-dimensional copula function, and the important measure of this method …is also deduced. The reliability model expression for systems with failure correlations, both in series and in parallel, is discussed and verified. Compare the proposed method with the assumption that the probability of a failure event is independent. This method solves the problem of a large error when ignoring the failure correlation between parts and the degree of the correlation between variables can be characterized. The reliability analysis can be conducted on complex systems affected both by multi-factors and failure correlations. The proposed method is applied to the reliability analysis of a hydraulic height adjustment system and the correctness and superiority of the method are verified. Show more
Keywords: Multi-dimensional T-S dynamic fault tree, copula function, failure correlation, importance measure, reliability analysis
DOI: 10.3233/JIFS-231939
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8279-8296, 2023
Authors: Min, Qu | Zhaoxian, Ren | Jiang, Wu
Article Type: Research Article
Abstract: To inherit and promote the excellent design characteristics of Chinese-style furniture, this study focuses on Chinese-style stools and proposes an integrated design and evaluation approach with combination of shape grammar, KANO model, and entropy-weighted VIekriterijumsko KOmpromisno Rangiranje (VIKOR) methods. Firstly, based on the initial forms of five Chinese-style stools, a shape feature library is constructed by extracting shape features using regional cultural symbols. Secondly, combining shape grammar and inference rules, innovative design alternatives are generated for Chinese-style stools, incorporating regional cultural symbol features. Thirdly, an in-depth investigation of Chinese-style furniture market is conducted, and user requirements are analyzed using KANO …model questionnaire, categorizing the requirements into three attributes: appearance, technological, and economic. Based on KANO model’s classification of user requirements, a set of 14 evaluation criteria for Chinese-style stools is established. Finally, to avoid subjective factors in weighting the criteria, the entropy-weighted method is applied, and VIKOR method is utilized to obtain the optimal ranking of the design alternatives for Chinese-style stools, ultimately selecting the optimal alternative. The results show that based on VIKOR method, the optimal solution is the same with comparison to the results obtained from Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), preference ranking organization methods for enrichment evaluations (PROMETHEE) and elimination and et choice translating reality (ELECTRE) methods. In addition, to verify its ergonomic characteristics, feasibility and rationality, the optimal alternative is simulated by JACK software. By integrating shape grammar, KANO model, and the entropy-weighted VIKOR method, this study provides some insights for incorporating regional cultural symbols into the design of Chinese-style furniture and exhibits certain advantages in terms of comprehensive evaluation, user orientation, decision objectivity, and consideration of diversity. Show more
Keywords: Shape grammar, KANO model, entropy weight-VIekriterijumsko KOmpromisno Rangiranje method (VIKOR) method, Chinese-style Stools(CSS)
DOI: 10.3233/JIFS-232580
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8297-8316, 2023
Authors: Gu, Xinxin
Article Type: Research Article
Abstract: In modern social APP interface design, how to effectively improve the corporate image and create the connotation of corporate culture is a significant key problem. With the emergence of APP, a growing number of people use them, increasing communication energy usage and slowing network operation. To improve app compatibility and speed, it is necessary to combine it with the most advanced and dependable technology, such as ZigBee, which is regarded as the best solution for wireless sensor networks. The ZigBee protocol is primarily used to incorporate working and data transmission in wireless sensor networks that are based on ZigBee technology. …As a result, incorporating ZigBee technology into APP interface design in the Internet of Things (IoT) domain can significantly improve brand APP interface design’s network operation efficiency. This paper presents a novel approach to enhance the performance and corporate image of brand mobile applications (APPs) by integrating ZigBee technology. The primary objective is to improve the operating efficiency and user experience of the brand APPs. The study involves a comparison between 10 brand APPs that have not integrated ZigBee technology and 10 brand APPs that have adopted ZigBee technology. The experimental results indicate that the operating efficiency of the brand APPs incorporating ZigBee technology is 97%, while the efficiency of the brand APPs without ZigBee technology is 85%, resulting in a notable difference of 12%. To assess the effectiveness of ZigBee technology integration, the study conducted experiments with 100 users, randomly assigned to interact with both types of brand APPs. The user feedback and observations revealed that brand APPs integrated with ZigBee technology exhibit significantly higher operating efficiency, contributing to a 12% improvement over their counterparts lacking ZigBee integration. Moreover, 90 out of 100 users reported a preference for the brand APPs integrated with ZigBee technology due to their superior user experience. The integration of ZigBee technology in brand APPs not only enhances the user experience but also contributes to the improvement of the company’s corporate image. Adopting ZigBee technology in brand APPs is a valuable strategy that can facilitate the long-term development and success of the company. Show more
Keywords: APP interface, ZigBee technology, Internet of Things, Clustering Algorithm, LEACH algorithm, Internet
DOI: 10.3233/JIFS-233343
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8317-8333, 2023
Authors: Senthil Kumar, K. | Anandamurugan, S.
Article Type: Research Article
Abstract: Cloud computing has become a crucial paradigm for large-scale data-intensive applications, but it also brings challenges like energy consumption, execution time, heat, and operational costs. Improving workflow scheduling in cloud environments can address these issues and optimize resource utilization, leading to significant ecological and financial benefits. As data centres and networks continue to expand globally, efficient scheduling becomes even more critical for achieving better performance and sustainability in cloud computing. Schedulers mindful of energy and deadlines will assign resources to jobs in a way that consumes the least energy while upholding the task’s quality standards. Because this scheduling involves a …Non-deterministic Polynomial (NP)-hard problem, the schedulers are able to minimize complexity by utilizing metaheuristic techniques. This work has developed methods like Artificial Bee Colony (ABC), Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) for optimizing the scheduler. Local search and exploration are respectably supported by heuristic algorithms. The algorithm’s exploration and exploitation features must also be balanced. The primary objective is to optimize computation-intensive workflows in a way that minimizes both energy consumption and execution time while maximizing throughput. This optimization should be achieved without compromising the Quality of Service (QoS) guarantee provided to users. The focus is on striking a balance between energy efficiency and performance to enhance the overall efficiency and cost-effectiveness of cloud computing environments. According to the simulation findings, the suggested ABC has a higher guarantee ratio for 5000 jobs when compared to the GA, PSO, GA with the longest processing time, and GA with the lowest processing time, by 7.14 percent, 4.7 percent, 3.5 percent, and 2.3 percent, respectively. It is observed that the proposed ABC possesses qualities like high flexibility, great robustness, and quick convergence leading to good performance. Show more
Keywords: Cloud computing, virtualization, scheduler, Virtual Machines (VMs), resource management
DOI: 10.3233/JIFS-234776
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8335-8348, 2023
Authors: Wang, Chuncha
Article Type: Research Article
Abstract: The hardness properties of constructional materials should be investigated as important factors in assessing the performance over the operation period. Two tests are performed to determine the stiffness characteristic, including slump and compressive strength (CS). They must be considered to examine efficiency, durability, and resistance to pressure. Due to the structure’s susceptibility and usage in dams, bridges, etc., high-performance concrete must have an appropriate set of these tests. There are two soft-based and laboratory methods for performing these tests. The laboratory method is not economical in terms of cost and time, and artificial intelligence (AI) is used to reduce the …aforementioned factors. Models and optimizers use software-based methods to help reduce errors and increase model accuracy. So, The main purpose of this research has been introducing novel ways of coupling an ensemble model with optimizers by adjusting some internal parameters. In this article, two models, the Radial Basis Function Neural network and Support Vector Regression were combined and coupled with General Normal Distribution Optimization (GNDO) and Archimedes optimization algorithm (AOA) into the two frameworks of SVRRBF-AOA and SVRRBF-GNDO. As a result, the hybrid model of SVRRBF-AOA could perform well by obtaining R2 and RMSE of 0.9915 and 2.71 for the slump and 0.9845 and 3.34 for CS, respectively. Show more
Keywords: High-performance concrete, slump, compressive strength, support vector regression, Radial basis function, generalized normal distribution optimization, archimedes optimization algorithm
DOI: 10.3233/JIFS-232114
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8349-8364, 2023
Authors: Tao, Nana | Hua, Yang | Ding, Chunxiao
Article Type: Research Article
Abstract: It is generally considered that attractivity is a concept that describes the overall characteristics of a system. This paper aims to study Pth moment attractivity for one order uncertain differential systems. According to the theory of uncertain differential systems, the concept of Pth moment attractivity is given. Moreover, the Pth moment attractivity of a class of nonlinear uncertain differential systems is studied and the judgment conditions of linear uncertain differential systems are derived.
Keywords: Pth moment, attractivity, uncertain differential systems, concept, judgment conditions
DOI: 10.3233/JIFS-232233
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8365-8370, 2023
Authors: Yu, Shujuan | Wu, Mengjie | Zhang, Yun | Xie, Na | Huang, Liya
Article Type: Research Article
Abstract: Reading Comprehension models have achieved superhuman performance on mainstream public datasets. However, many studies have shown that the models are likely to take advantage of biases in the datasets, which makes it difficult to efficiently reasoning when generalizing to out-of-distribution datasets with non-directional bias, resulting in serious accuracy loss. Therefore, this paper proposes a pre-trained language model based de-biasing framework with positional generalization and hierarchical combination. In this work, generalized positional embedding is proposed to replace the original word embedding to initially weaken the over-dependence of the model on answer distribution information. Secondly, in order to make up for the …influence of regularization randomness on training stability, KL divergence term is introduced into the loss function to constrain the distribution difference between the two sub models. Finally, a hierarchical combination method is used to obtain classification outputs that fuse text features from different encoding layers, so as to comprehensively consider the semantic features at the multidimensional level. Experimental results show that PLM-PGHC helps learn a more robust QA model and effectively restores the F1 value on the biased distribution from 37.51% to 81.78%. Show more
Keywords: Natural language processing, machine reading comprehension, pre-trained language model, de-biasing framework
DOI: 10.3233/JIFS-233029
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8371-8382, 2023
Authors: Dong, Hao | Ali, Zeeshan | Mahmood, Tahir | Liu, Peide
Article Type: Research Article
Abstract: Algebraic and Einstein are two different types of norms which are the special cases of the Hamacher norm. These norms are used for evaluating or constructing three different types of aggregation operators, such as averaging/geometric, Einstein averaging/geometric, and Hamacher averaging/geometric aggregation operators. Moreover, complex Atanassov intuitionistic fuzzy (CA-IF) information is a very famous and dominant technique or tool which is used for depicting unreliable and awkward information. In this manuscript, we present the Hamacher operational laws for CA-IF values. Furthermore, we derive the power aggregation operators (PAOs) for CA-IF values, called CA-IF power Hamacher averaging (CA-IFPHA), CA-IF power Hamacher ordered …averaging (CA-IFPHOA), CA-IF power Hamacher geometric (CA-IFPHG), and CA-IF power Hamacher ordered geometric (CA-IFPHOG) operators. Some dominant and valuable properties are also stated. Moreover, the multi-attribute decision-making (MADM) methods are developed based on the invented operators for CA-IF information and the detailed decision steps are given. Many prevailing operators are selected as special cases of the invented theory. Finally, the derived technique will offer many choices to the expert to evaluate the best alternatives during comparative analysis. Show more
Keywords: Complex intuitionistic fuzzy sets, power aggregation operators, decision-making problems, hamacher t-norm and t-conorm
DOI: 10.3233/JIFS-230323
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8383-8403, 2023
Authors: Wang, Yubiao | Wen, Junhao | Zhou, Wei | Tao, Bamei | Wu, Quanwang | Fu, Chunlei | Li, Heng
Article Type: Research Article
Abstract: With the development of the Internet and the informatization construction of universities, the massive data accumulated by “campus big data” presents problems such as discreteness and sparseness. Students with abnormal behaviors have become an urgent problem to be solved in student behavior analysis. This paper proposes an early warning method for abnormal behaviour of college students based on multimodal fusion and an improved decision tree (EWMABCS-MFIDT). First, given the insufficient representation of student behavioral portraits and the problems of timeliness and dynamics in behavioral labels, a student behavioral portrait based on the multimodal fusion method is proposed. Second, aiming at …the timeliness and backwardness of abnormal behavior prediction, based on student behavior classification prediction, this paper proposes an improved decision tree-based early warning method for abnormal student behavior. Finally, we design a student behavior analysis and early warning framework under the campus big data environment. Taking the abnormal early warning of students’ academic performance as an example, compared with other early warning algorithms, the EWMABCS-MFIDT method can improve the accuracy of early warning and make students’ educational work more targeted, personalized, and predictive. Show more
Keywords: Education big data, student behavior portrait, multimodal fusion, abnormal behavior early warning, improved decision tree
DOI: 10.3233/JIFS-231509
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8405-8427, 2023
Authors: Xiao, Huimin | Yang, Peng | Gao, Xiaosong | Wei, Meng
Article Type: Research Article
Abstract: This study addresses the inadequacy of the current quantitative calculation method for decision-maker credibility in hesitant fuzzy multi-attribute decision-making, where credibility is considered. To overcome this limitation, a novel quantitative calculation method for decision-maker credibility is proposed based on the principles of basic uncertainty information theory under a hesitant fuzzy environment. Furthermore, a credible-based hesitant fuzzy multi-attribute decision model is developed. Initially, the paper introduces the concept of a basic uncertainty hesitant fuzzy set by combining basic uncertainty information theory with hesitant fuzzy set theory, thereby enhancing the understanding of basic uncertainty information theory within the realm of non-interval fuzzy …information. Building on this foundation, the method for determining the hesitant degree of each element in the basic uncertainty hesitant fuzzy set is provided, followed by the proposed quantitative calculation method for decision-maker’s credibility under the hesitant fuzzy environment, which addresses the lack of a quantitative approach for assessing expert credibility under such circumstances. Subsequently, an attribute weight assignment method is introduced, considering the decision-maker’s credibility, leading to the formulation of a basic uncertainty hesitant fuzzy multi-attribute decision model based on credibility. This model enhances existing hesitant fuzzy multi-attribute decision-making methods that take credibility into account. To validate the proposed approach, the study applies it to the selection of new energy vehicle battery suppliers. The results of the analysis using actual data and sensitivity analysis demonstrate that decision-maker credibility can be quantitatively determined using the proposed method. Additionally, the basic uncertainty hesitant fuzzy multi-attribute decision-making model based on credibility effectively aids in supplier selection. The feasibility and stability of this method are verified through the examination of risk appetite coefficient and hesitancy coefficient. Show more
Keywords: Hesitant fuzzy set, basic uncertain information, basic uncertain information hesitant fuzzy sets, credibility, hesitance degree
DOI: 10.3233/JIFS-232820
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8429-8440, 2023
Authors: Wang, Yuan
Article Type: Research Article
Abstract: Recent years, research on automatic music transcription has made significant progress as deep learning techniques have been validated to demonstrate strong performance in complex data applications. Although the existing work is exciting, they all rely on specific domain knowledge to enable the design of model architectures and training modes for different tasks. At the same time, the noise generated in the process of automatic music transcription data collection cannot be ignored, which makes the existing work unsatisfactory. To address the issues highlighted above, we propose an end-to-end framework based on Transformer. Through the encoder-decoder structure, we realize the direct conversion …of the spectrogram of the collected piano audio to MIDI output. Further, to remove the impression of environmental noise on transcription quality, we design a training mechanism mixed with white noise to improve the robustness of our proposed model. Our experiments on the classic piano transcription datasets show that the proposed method can greatly improve the quality of automatic music transcription. Show more
Keywords: Music automatic transcription, transformer, piano, deep learning
DOI: 10.3233/JIFS-233653
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8441-8448, 2023
Authors: Sultanuddin, S.J. | Sudhee, Devulapalli | Prakash Satve, Priyanka | Sumithra, M. | Sathyanarayana, K.B. | Kumari, R. Krishna | Narasimharao, Jonnadula | Reddy, R. Vijaya Kumar | Rajkumar, R.
Article Type: Research Article
Abstract: Following the Covid-19 pandemic, the rapid spread of online education and tests demanded the implementation of cheating detection tools to ensure academic integrity. While advances in technology such as face recognition, face expression recognition, head posture analysis, eye gaze tracking, network data traffic analysis, and IP spoofing detection have shown promising results in detecting fraudulent behavior, their integration raises ethical concerns that must be carefully considered. This work presents a cognitive computing strategy for investigating the ethical implications of using cheating detection systems in online tests. This study attempts to examine the potential impact on students’ privacy, fairness, and trust …in the examination process by employing cognitive computing, which models human cognitive capacities. A thorough literature review is used in the process to uncover existing ethical norms and regulatory frameworks linked to online assessments and cheating detection. Soft computing approaches are also used to evaluate the effectiveness and dependability of the aforementioned cheating detection strategies. The study looks into how far facial recognition and expression analysis can go in terms of privacy, as well as the possibility of bias in head posture analysis and eye gaze tracking algorithms. Furthermore, it investigates the ethical implications of monitoring network data traffic and detecting IP spoofing, with a focus on data security and user permission. The cognitive computing model, based on the analysis, presents a comprehensive framework for ethical decision-making when installing cheating detection technologies. The findings of this study contribute to the continuing discussion about the ethical concerns of using modern technologies to identify cheating in online exams. It provides educational institutions and policymakers with practical ideas for striking a balance between academic integrity and protecting students’ rights and dignity. By emphasizing ethical issues, this study aims to ensure that the implementation of cheating detection systems adheres to values of fairness, transparency, and privacy protection, promoting a trusting and supportive online learning environment for all parties involved. Show more
DOI: 10.3233/JIFS-235066
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8449-8463, 2023
Authors: Chellam, S. | Kuruseelan, S. | Pravin Rose, T. | Jasmine Gnana Malar, A.
Article Type: Research Article
Abstract: Congestion of the power system is the most common challenge an Independent System Operator (ISO) faces in restructured electricity markets. It affects the efficiency of the market when transmission lines are congested causing transmission costs to rise. To prevent transmission line congestion, ISO needs to take the necessary steps. To solve these issues, this paper introduces a new method namely the Adaptive Red Fox Optimization algorithm (ARFOA) to compute the congestion cost considering the power losses in the transmission line system. Initially, all the generators in the system are selected to reschedule real power outputs. Second, by establishing a proposed …optimization issue, ARFOA is employed to control transmission line congestion. The implementation of the proposed method is evaluated on the IEEE 30 bus system. The algorithm’s adaptability is tested using several case studies involving the base case and line outages, also compared with the other existing techniques such as PSO, ASO, and GSO approaches. The simulation outcomes indicate that the proposed strategy outperforms existing techniques in terms of congestion cost, power loss, generation rescheduled power, and computational time. Show more
Keywords: Restructured power systems, congestion management, generator rescheduling, Adaptive Red Fox Optimization algorithm, optimal power flow
DOI: 10.3233/JIFS-224559
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8465-8477, 2023
Authors: Xu, Tiefeng | Wang, Tao | Jiang, Xianwei | Liu, Gensheng
Article Type: Research Article
Abstract: In the initial construction process of smart grid dispatching control system in power grid dispatching control center, because different subsystems are in decentralized development, independent operation and independent management, it is easy to reduce data interconnection, which leads to difficulties in data sharing and restricts the information level of the system. The data is multi-source, and the data format is inconsistent, resulting in the application problems that the data can not be shared, accessed, managed, analyzed and mined in real time among different subsystems. In order to solve the problems of data sharing and mining, this paper constructs a knowledge …map entity extraction model to study the power grid fault events. Based on the knowledge map theory, the structured and unstructured data related to power grid dispatching are processed to improve the application efficiency of data. Cleaning the preprocessed data to obtain the corresponding entity value and attribute value. The knowledge extraction model of power grid fault event reasoning knowledge mapping is constructed, and the power grid fault event reasoning knowledge edge mapping system is designed to extract the relationship between events and complete data storage. The experimental results show that the text prediction degree of the proposed model is high, which can reach more than 95; The accuracy is 96.71%, the recall rate is 94.88%, and the F1 value is 9.27%. This proves the feasibility of this study, in order to provide data and theoretical support for intelligent management and real-time dispatching of power grid. Show more
Keywords: Power grid fault, event reasoning, knowledge map, data extraction, data mining
DOI: 10.3233/JIFS-232370
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8479-8488, 2023
Authors: Anuradha, P. | Navitha, Ch. | Renuka, G. | Jithender Reddy, M. | Rajkumar, K.
Article Type: Research Article
Abstract: Nowadays, WSN-IoT may be used to remotely and in real-time monitor patients’ vital signs, enabling medical practitioners to follow their status and deliver prompt treatments. This equipment can evaluate the gathered data on-site thanks to the integration of edge computing, enabling quicker diagnostic and medical options with the need for massive data transmission to a centralized server. Making the most of the resources accessible without sacrificing monitoring efficiency is critical due to the constrained lifespan and resource availability that these intelligent devices still encounter. To make the most of the assets at hand and achieve excellent categorization performance, intelligence must …be applied through a learning model. Making the most of the resources that are available without sacrificing performance monitoring is essential given the restricted lifespan and resource availability that these intelligent devices still suffer. A learning model must incorporate intelligence in order to maximize the utilization of resources while maintaining excellent classification performance. In this study, a unique Harris Hawks Optimized Long Short-Term Memory (HHO-LSTM) that categorizes Electrocardiogram (ECG) data without compromising optimum utilization of resources is proposed for Edge enabled WSN devices. We will train the model to correctly categorize various kinds of ECG readings by employing cutting-edge techniques and neural networks. Significant testing is carried out on fifty individuals utilizing real-time test chips with integrated controllers coupled to ECG sensors and NVIDIA Jetson Nano Boards as edge computing devices. To show the benefits of the suggested model, performance comparisons with various deep-learning techniques for peripheral equipment are conducted. Experiments show that in terms of classification results (98% accuracy) and processing expenses, the suggested model, which is based on Edge-enabled WSN devices, beat existing state-of-the-art learning algorithms. The ability of this technology to help medical personnel diagnose a range of heart issues would eventually enhance customer management. Show more
Keywords: WSN, IoT, edge computing, Harris Hawks Optimization, gated recurrent neural networks, electrocardiograms
DOI: 10.3233/JIFS-233442
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8489-8501, 2023
Authors: Lakshmi, H. | Queen, M.P. Flower
Article Type: Research Article
Abstract: Demand side management (DSM) is a smart grid technology that enables consumers to make decisions about their energy use, lowers energy suppliers’ peak hour demand, and changes the load profile. Demand Side Management (DSM) is regarded as the most significant method used in a Smart Grid (SG), as it helps consumers produce accurate information about their electrical energy usage and assists the utility in reducing peak load demand and reshaping the demand curve. By effectively utilising storage with Renewable Energy Systems (RES), DSM seeks to reduce peak demand, electricity costs, and emission rates. In this paper, we have proposed a …load-shifting method for the DSM with a large number of controllable devices. The load-shifting issue has been handled hourly, throughout the course of a 24-hour day, in order to reduce the peak demand, lower the power cost, and minimise the Peak to Average load Ratio (PAR). The Archimedes Optimization (AO) method has been utilised in residential loads in SG to achieve the goal of load shifting by minimising of the problem to the DSM. The simulation findings demonstrate that the suggested demand side management technique generates significant cost savings while lowering the smart grid’s peak load demand. Show more
Keywords: Demand side management (DSM), peak to average load ratio (PAR), archimedes optimization (AO) algorithm, smart grid (SG)
DOI: 10.3233/JIFS-222828
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8503-8517, 2023
Authors: Shan, Renliang | Nie, Mingyue | Zheng, Peng | Dong, Ruiyu | Bai, Yao | Ma, Tiancheng | Wang, Yuxin | Dou, Haoyu
Article Type: Research Article
Abstract: To study the effects of the anisotropic matrix and structural planes on the splitting strength and failure mode of rocks, Brazilian splitting tests were carried out with seven different loading angles on specimens of rock-like materials with rough structural planes. The surface strains of the samples during the failure process were monitored and analysed with the help of a high-speed camera and digital image correlation (DIC) technology. The test results showed that the Brazilian splitting strength (BSS) decreased gradually with an increased loading angle. According to the crack morphology, the samples showed three failure modes, and the structural plane and …the loading angle (θ) had an important effect on the failure mode. When θ < 75°, the sample failure was mainly affected by the matrix, and when θ > 75°, the sample failure was mainly controlled by the structural plane. The numerical simulation of the sample with a structural plane was carried out by the PFC2D particle flow program, the micro parameters were calibrated using a back propagation (BP) neural network model. The internal cracks of the sample under a splitting load were mainly matrix tensile microcracks and structural plane shear microcracks, and the tensile microcracks in the side with the weak matrix appeared significantly earlier than those in the side with the strong matrix. With increasing loading angle, the proportion of tensile microcracks in the matrix increased, while the proportion of shear microcracks in the matrix decreased, especially in the weak matrix. The microcracks at the structural plane mainly changed from tensile microcracks to shear microcracks, and the development degree of microcracks along the structural plane was more significant than that on the weak matrix with increasing loading angle. The results of the study can provide a reference for rock stability evaluation and utilization. Show more
Keywords: Structural plane, Brazilian test, failure mode, particle flow code, BP neural network
DOI: 10.3233/JIFS-232386
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8519-8539, 2023
Authors: Ibrahim, Nechervan B. | Khalaf, Alias B.
Article Type: Research Article
Abstract: In this paper we create a new topological structure induced by connected simple undirected graphs called maximal block topological space and study some properties of this new type of topology. Also, define some concepts in maximal block topological space like (derived subgraph, closure subgraph and interior subgraph). Some results and properties of vertices and subgraphs in G due to maximal block topological space are proved and discussed. Moreover, showed that a maximal block topological space is T 0 -space and T 1/2 -space if and only if G is acyclic graph. Finally, irreducibility and topologically independent of maximal block …topological space are introduced. Show more
Keywords: Topological space, Maximal block topological space, T0-space, T1/2-space.
DOI: 10.3233/JIFS-223749
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8541-8551, 2023
Authors: Sonugür, Güray | Çayli, Abdullah
Article Type: Research Article
Abstract: This work aimed to develop a data glove for the real-time translation of Turkish sign language. In addition, a novel Fuzzy Logic Assisted ELM method (FLA-ELM) for hand gesture classification is proposed. In order to acquire motion information from the gloves, 12 flexibility sensors, two inertial sensors, and 10 Hall sensors were employed. The NVIDIA Jetson Nano, a small pocketable minicomputer, was used to run the recognition software. A total of 34 signal information was gathered from the sensors, and feature matrices were generated in the form of time series for each word. In addition, an algorithm based on Euclidean …distance has been developed to detect end-points between adjacent words in a sentence. In addition to the proposed method, CNN and classical ANN methods, whose model was created by us, were used in sign language recognition experiments, and the results were compared. For each classified word, samples were collected from 25 different signers, and 3000 sample data were obtained for 120 words. Furthermore, the dataset’s size was reduced using PCA, and the results of the newly created datasets were compared to the reference results. In the performance tests, single words and three-word sentences were translated with an accuracy of up to 96.8% and a minimum 2.4 ms processing time. Show more
Keywords: Extreme learning machines (ELM), fuzzy logic, sign language recognition, data glove, CNN, ANN
DOI: 10.3233/JIFS-231601
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8553-8565, 2023
Authors: Hashemi, Hebatollah | Ezzati, Reza | Mikaeilvand, Naser | Nazari, Mojtaba
Article Type: Research Article
Abstract: This research paper presents an innovative approach for modeling and analyzing complex systems with uncertain data. Our strategy leverages fuzzy calculus and time-fractional differential equations to achieve this goal. Specifically, we propose the utilization of the fuzzy Atangana-Baleanu time-fractional derivative, which incorporates non-singular kernels for fuzzy functions. This derivative type is particularly suitable for qualitative analysis of fractional differential equations in fuzzy space. We establish the existence and uniqueness of solutions for fuzzy linear time-fractional problems based on this differentiability concept. Additionally, we introduce a numerical solution method, namely the fuzzy homotopy perturbation transform method (FHPTM), to solve these problems. …To demonstrate the effectiveness and practical applicability of our approach, we provide concrete examples such as the fuzzy time-fractional Advection-Dispersion equation, the fuzzy time-fractional Diffusion equation, and the fuzzy time-fractional Black-Scholes European option pricing problem. These examples not only illustrate the solution steps involved but also showcase the potential of our method in addressing real-world problems. The outcomes of our research underscore the significance of considering fuzzy calculus and time-fractional differential equations when modeling and analyzing intricate systems with uncertain data. Show more
Keywords: Fuzzy atangana-baleanu time-fractional derivative, fuzzy homotopy perturbation transform method, fuzzy time-fractional black-scholes european option pricing problem, fuzzy time-fractional advection-dispersion equation, fuzzy time-fractional diffusion equation
DOI: 10.3233/JIFS-232094
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8567-8582, 2023
Authors: Guo, Liang | Zhang, Junzhao | Dong, Peiyi | Wan, Yuanzheng | Li, Wenhui
Article Type: Research Article
Abstract: To solve the problem of inaccurate user phase identification, the paper proposes a new algorithm based on improved cloud model and adaptive segmented voltage algorithm. Firstly, the new algorithm uses improved cloud model to calculate the digital features of station area and users’ voltage sequences quickly. Secondly, the paper uses the adaptive segmentation voltage algorithm to divide the full voltage sequences into three parts automatically to add local features into phase identification. Finally, the paper calculates cosine similarity between each segmented voltage cloud model to identify users’ voltage phase. The analysis based on station data and field verification shows that …the new algorithm has not only improved the calculation efficiency by 41% compared with traditional user phase identification algorithm, but also increased the difference in identification results between different phases by 1000 times. In the final result, the accuracy of the new algorithm is 95%. The new algorithm has more obvious differentiation and higher accuracy. The analysis results based on the actual engineering data also prove the feasibility and effectiveness of the new user phase identification algorithm. Show more
Keywords: Phase identification, adaptive segmentation voltage, improved cloud model, cosine similarity
DOI: 10.3233/JIFS-232415
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8583-8594, 2023
Authors: Wang, Haochen | Zhang, Changlun | Chen, Shuang | Wang, Hengyou | He, Qiang | Mu, Haibing
Article Type: Research Article
Abstract: Point cloud upsampling can improve the resolutions of point clouds and maintain the forms of point clouds, which has attracted more and more attention in recent years. However, upsampling networks sometimes generate point clouds with unclear contours and deficient topological structures, i.e., the problem of insufficient form fidelity of upsampled point clouds. This paper focuses on the above problem. Firstly, we manage to find the points located at contours or sparse positions of point clouds, i.e., the form describers, and make them multiply correctly. To this end, 3 statistics of points, i.e., local coordinate difference, local normal difference and describing …index, are designed to estimate the form describers of the point clouds and rectify the feature aggregation of them with reliable neighboring features. Secondly, we divide points into disjoint levels according to the above statistics and apply K nearest neighbors algorithm to the points of different levels respectively to build an accurate graph. Finally, cascaded networks and graph information are fused and added to the feature aggregation so that the network can learn the topology of objects deeply, enhancing the perception of model toward graph information. Our upsampling model PU-FPG is obtained by combining these 3 parts with upsampling networks. We conduct abundant experiments on PU1K dataset and Semantic3D dataset, comparing the upsampling effects of PU-FPG and previous works in multiple metrics. Compared with the baseline model, the Chamfer distance, the Hausdorff distance and the point-to-surface distance of PU-FPG are reduced by 0.159 × 10-3 , 2.892 × 10-3 and 0.852 × 10-3 , respectively. This shows that PU-FPG can improve the form fidelity and raise the quality of upsampled point clouds effectively. Our code is publicly available at https://github.com/SATURN2021/PU-FPG . Show more
Keywords: Point cloud, upsampling, convolutional networks, completion
DOI: 10.3233/JIFS-232490
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8595-8612, 2023
Authors: Călin, Mariana Floricica | Flaut, Cristina | Piciu, Dana
Article Type: Research Article
Abstract: Algebras of Logic deal with some algebraic structures, often bounded lattices, considered as models of certain logics, including logic as a domain of order theory. There are well known their importance and applications in social life to advance useful concepts, as for example computer algebra. Starting from results obtained by Di Nolla and Lettieri in [1 ], in which they analyzed the structure of finite BL-algebras, in this paper we find properties and give examples of commutative unitary rings R with its set of ideals Id (R ) to be a BL-algebra of a given type. Moreover, we …present properties of finite rings or rings with a finite number of ideals in their connections with BL-rings. Show more
Keywords: Algebras of Logic, BL-algebras, BL-rings
DOI: 10.3233/JIFS-232815
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8613-8622, 2023
Authors: Li, Yuejie | Liu, Chang’an | Li, Shijun
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-233700
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8623-8636, 2023
Authors: Gokila, R.G. | Kannan, S.
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-234311
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8637-8649, 2023
Authors: Chen, Junfen | Han, Jie | Xie, Bojun | Li, Nana
Article Type: Research Article
Abstract: Contrastive learning is a powerful technique for learning feature representations without manual annotation. The K-nearest neighbor (KNN) method is commonly used to construct positive sample pairs to calculate the contrastive loss. However, it is challenging to distinguish positive sample pairs, reducing clustering performance. We propose a novel D eep C ontrastive C lustering method based on a G rapH convolutional network called GHDCC. It uses an instance-level contrastive loss with mean square error (MSE) regularization and a cluster-level contrastive loss to incorporate semantic features and perform cluster assignments. The method utilizes a graph convolutional network (GCN) to improve the …semantic consistency of features and linear interpolation data augmentation to improve the representation ability of the model. To minimize the occurrence of false positive sample pairs, we select only samples whose similarity exceeds a predefined threshold to construct the adjacency matrix. The experimental results on six public datasets demonstrate that the GHDCC significantly outperforms contrastive clustering (CC, 500) by a large margin except on CIFAR-10. The GHDCC performs well compared to other deep contrastive clustering methods and achieves the highest clustering accuracy of 0.913 on ImageNet-10. Show more
Keywords: Self-supervised clustering, graph convolutional network, linear interpolation data augmentation, contrastive learning
DOI: 10.3233/JIFS-230208
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8651-8661, 2023
Authors: Cao, Mengmeng | Hu, Jian | Wang, Zeming | Yao, Jianyong
Article Type: Research Article
Abstract: In this paper, the high accuracy motion output feedback control of a kind of launching platforms driven by motors is focused. The launching platform is used to launch kinetic load to hit the target so it is susceptible to external disturbance. In addition, significant issues arise due to limitations on the plant inputs, such as actuator energy limits and velocity state is usually unavailable due to the limitation of system cost and volume. A new adaptive fuzzy output feedback controller based on dual observers is proposed for solving these problems. A smooth and continuous model is established for input saturation …to compensate it. A sliding mode observer and a fuzzy observer with proper membership function are combined to estimate the unmeasured system states more accurately. An adaptive robust controller and the fuzzy observer are combined to realize a motion control with disturbance rejection, which allows correct adaptation while the plant input is saturated. Lyapunov theorem proves the bounded stability of the proposed controller when there exists observation error. Extensive comparative simulation and experiment results verify the effectiveness and practicability of the proposed controller and show that the control accuracy can be improved by an order of magnitude compared with the traditional PID controller and better than some other nonlinear controllers. Show more
Keywords: Launching platform, fuzzy observer, output feedback control, adaptive robust control, input saturation
DOI: 10.3233/JIFS-230688
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8663-8678, 2023
Authors: Chen, Dewang | Zhou, Jiali | Tong, Wenlin | Kong, Lingkun | Chen, Yuandong
Article Type: Research Article
Abstract: As a model for reasoning and decision-making based on fuzzy rules, fuzzy systems have high interpretability. However, when the data dimension increases, the fuzzy system will face the problem of “rule explosion”, making it difficult to learn and predict effectively. In this paper, the fuzzy system trained by the FLOWFS (Fast-Learning with Optimal Weights for Fuzzy Systems) algorithm is used as sub-module in the deep fuzzy system, and the deep fuzzy system DFLOWFS (Deep FLOWFS) is constructed from the bottom-up hierarchical structure as the following three steps. 1) The FLOWFS algorithm assigns weight attributions to each fuzzy rule, and the …rule weights are trained by the least square method with regularization terms to shorten training time and improve accuracy. 2) Three strategies of dividing high-dimensional inputs into multiple low-dimensional inputs are proposed as sequential division, random division and correlation division. Then, it is verified by experiments that the correlation division has the best performance. 3) The sub-module discarding method is proposed to discard the sub-modules with poor performance to have a maximum improvement of 13.8% compared to the DFLOWFS without using the sub-module discarding method. Then, the optimized DFLOWFS is verified and compared with the other three classic regression models on the three UCI datasets. Experiments show that with the increase of the data dimension, DFLOWFS not only have good interpretability but also have good accuracy. Furthermore, DFLOWFS performs best among all models in comprehensive scores, with good learning ability and generalization ability. Therefore, the proposed strategies with hierarchical structure for optimal shallow fuzzy systems are effective, which give a new insight for fuzzy system research. Show more
Keywords: Correlation division, fuzzy system, interpretability, rule weights, submodule discarding method
DOI: 10.3233/JIFS-231050
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8679-8690, 2023
Authors: Qiu, Guangying | Tao, Dan | Su, Housheng
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-232846
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8691-8701, 2023
Authors: Subhashini, R. | Hemalakshmi, G.R. | Rajalakshmi, R. | Chen, Chuang
Article Type: Research Article
Abstract: The quality of sleep plays a crucial role in physical well-being, and individuals are becoming increasingly concerned about sleep quality and its associated health issues. Although various sleep monitoring devices exist, there remains a need for a highly accurate sleep state identification algorithm. To address this, we present a paper that utilizes machine learning techniques to identify human sleep states based on electroencephalogram (EEG) signals collected by an EEG instrument. We propose a model that incorporates two nonlinear characteristic parameters, MSE and PSE, extracted from artificially designed EEG signals as input. Additionally, we employ a Support Vector Machine (SVM) classifier …algorithm to accurately identify sleep states, eliminating uncertainties associated with manually designed feature parameters. Experimental results demonstrate the superior accuracy of our proposed model for sleep state analysis, offering valuable insights for improving sleep quality and addressing related health concerns. Show more
Keywords: Sleeping quality, health, electroencephalograph, support vector machine, machine learning
DOI: 10.3233/JIFS-230765
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8703-8716, 2023
Authors: Zhao, Aiwu | Du, Chuantao | Guan, Hongjun
Article Type: Research Article
Abstract: Based on the double hierarchy linguistic term sets (DHLTS), a novel forecasting model is proposed considering both the internal fluctuation rules and the external correlation of different time series. The innovative aspects of this model consist of: (i) It can expresses more internal fluctuation and external correlation information, providing guarantees for improving the predictive performance of the model. (ii) The equivalent transformation function of DHLTS reduces the fuzzy granularity and improves the prediction accuracy. (iii) The application of similarity measures can extract the closest rules from historical states based on the distance operators of DHLTS. In addition, experiments on TAIEX …considering the impact of the U.S. stock market and other data show that the model has good predictive performance. Show more
Keywords: Fuzzy time series, double hierarchy linguistic term set, forecast, Co-movements of stock markets
DOI: 10.3233/JIFS-230810
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8717-8733, 2023
Authors: Gao, Gengjun | Wang, Yiwen
Article Type: Research Article
Abstract: The rationality of profit distribution affects the stability of the multimodal transport alliance. In the multimodal transport alliance, the participation rate of the carrier and the communication structure of the alliance are important influencing factors of profit distribution results. To get a reasonable profit distribution scheme, this paper constructs a profit distribution model considering the characteristics of multimodal transport, called the Choquet Cloud Gravity Center AT model. Firstly, considering the communication structure of the alliance, the Cloud Gravity Center Average Tree method is used as the base model for profit distribution. Secondly, considering the multimodal transport alliance is a fuzzy …coalition, the profit for each alliance subset in the base model is calculated by the Choquet integral. Then, the profit distribution model considering participation rate and communication structure is obtained. Finally, a numerical example is given to illustrate the applicability of the model, and comparative analysis is conducted to verify the rationality of the model. This study provides a suitable profit-sharing model for multimodal transport alliances, which is conducive to the stable and efficient operation of alliances. Show more
Keywords: Multimodal transport, profit distribution, fuzzy coalition, communication structure, Choquet integral
DOI: 10.3233/JIFS-231370
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8735-8746, 2023
Authors: Cano-Izquierdo, Jose-Manuel | Ibarrola, Julio | Almonacid, Miguel
Article Type: Research Article
Abstract: Deep-learning (DL) is a new paradigm in the artificial intelligence field associated with learning structures able to connect directly numeric data with high-level patterns or categories. DL seems to be a suitable technique to deal with computationally challenging Brain Computer Interface (BCI) problems. Following DL strategy, a new modular and self-organized architecture to solve BCI problems is proposed. A pattern recognition system to translate the measured signals in order to establish categories representing thoughts, without previous pre-processing, is developed. To achieve an easy interpretability of the system internal functioning, a neuro-fuzzy module and a learning methodology are carried out. The …whole learning process is based on machine learning. The architecture and the learning method are tested on a representative BCI application to detect and classify motor imagery thoughts. Data is gathered with a low-cost device. Results prove the efficiency and adaptability of the proposed DL architecture where the used classification module (S-dFasArt) exhibits a better behaviour compared with the usual classifiers. Additionally, it employs neuro-fuzzy modules which allow to offer results in a rules format. This improves the interpretability with respect to the black-box description. A DL architecture, going from the raw data to the labels, is proposed. The proposed architecture, based on Adaptive Resonance Theory (ART) and Fuzzy ART modules, performs data processing in a self-organized way. It follows the DL paradigm, but at the same time, it allows an interpretation of the operation stages. Therefore this approach could be called Transparent Deep Learning. Show more
Keywords: Transparent deep learning, brain computer interface, neuro-fuzzy modular architecture, s-dFasArt, motor imagery
DOI: 10.3233/JIFS-231387
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8747-8760, 2023
Authors: Buche, Arti | Chandak, M.B.
Article Type: Research Article
Abstract: In the field of finance, deep learning techniques have been extensively researched for predicting stock prices. In this research, we propose a novel approach for predicting stock price movements using a combination of reviews and historical price data for SBI and HDFC stocks. As market volatility is influenced by numerous factors, it is crucial to consider it while predicting stock prices. To capture the interactions between the price and text data effectively, we create a fusion mix and utilize a hybrid information mixing module, designed using BERT and BiLSTM, to extract the multimodal interactions between the time series and semantic …features. The proposed model, the hybrid information mixing module, is based on a multilayer perceptron and achieves high accuracy in predicting price fluctuations in highly volatile stock markets. Future research can extend this approach to include additional data sources and explore other deep learning techniques for better performance. Show more
Keywords: Natural language processing, deep learning, multilayer perceptron, BiLSTM, BERT, Indian stock market
DOI: 10.3233/JIFS-231472
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8761-8773, 2023
Authors: Adaikkan, Kalaivani | Thenmozhi, Durairaj
Article Type: Research Article
Abstract: Social media has become one of the most popular medium of communication and the post may be predominantly unstructured, informal, and frequently misspelled. It has become increasingly common for users to use abusive language in their comments. Detecting offensive language on social media platforms and the presence of such language on the Internet has become a major challenge for modern society. To overcome this challenge, Offensive Language Classification based on the Chaotic Antlion optimization algorithm has been proposed. Initially, the dataset is pre-processed using NLP languages for removing irrelevant data. Consequently, statistical, synthetic, and lexicon features are extracted using various …feature extraction techniques. A Chaotic Antlion Optimization Algorithm is used to select the most relevant features during the feature selection phase. After selecting the features, a Ghost network classifies the input data into four classes namely offensive, non-offensive, swear, and offensive but not offensive. The proposed method was evaluated based on a number of variables, including precision, accuracy, specificity, recall, and F-measure. The best classification accuracy is achieved by the suggested method, which is 99.27% for the SOLID dataset and 98.99% for the OLID dataset. The suggested method outperforms the DCNN, Simple Logistics, and CNN methods in terms of overall accuracy by 4.99%, 8.72%, and 10.4%, respectively. Show more
Keywords: Chaotic Antlion optimization algorithm, detecting offensive language, SOLID dataset, Ghost network, DCNN
DOI: 10.3233/JIFS-232217
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8775-8788, 2023
Authors: Zhang, Xu | Lv, Mingrui | Yuan, Xumei
Article Type: Research Article
Abstract: In order to solve the problems of insufficient uncertainty information measure, inaccuracy of weight calculation and incommensurability of indices in hybrid multi-criteria decision making, this paper introduces the Cloud-CRITIC weight calculation method and Cloud-CRITIC-PDR method, which combine cloud model, CRITIC method and Probabilistic Dominance Relation (PDR). In these two methods, the cloud model is used to characterize uncertainty, the Comprehensive information of CRITIC method has been modified in order to adapt to uncertain situation, the PDR method is used to compare schemes. A case study concerning supplier evaluation is given to demonstrate the merits of the cloud-CRITIC and cloud-CRITIC-PDR. The …effectiveness and superiority of the developed methods are further illustrated through method comparison and sensitivity analysis. These combined methods can be used for dealing with decision-making problems with complex index types and strong data uncertainty, such as supplier evaluation and risk assessment. There are few papers about combining the cloud model, CRITIC method, and PDR method under hybrid indices decision-making situation at present, so this paper can provide a new perspective on hybrid MCDM. Show more
Keywords: Hybrid multi-criteria decision making, cloud model, probabilistic dominance relationship, CRITIC, Gaussian criterion
DOI: 10.3233/JIFS-232605
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8789-8803, 2023
Authors: Guo, Xiao | Feng, Qinrong | Zhao, Lin
Article Type: Research Article
Abstract: Fuzzy soft set as a tool to deal with uncertainty can effectively handle decision making problems. However, there are many redundant parameters in the decision making process. In order to remove redundant parameters to improve the efficiency of decision making, different parameter reduction algorithms for fuzzy soft sets based on different decision criteria have been proposed. This paper focuses on the problem of parameter reduction of fuzzy soft sets based on choice value criteria. The restrictions of the strict conditions about parameter reduction lead to a very low applicability of some previous algorithms based on choice value criteria. To address …this limitation, we introduce a flexible definition of parameter reduction for fuzzy soft sets. Further a difference-based parameter reduction algorithm for fuzzy soft sets is proposed. Compared with some previous algorithms based on choice value criteria, the proposed algorithm not only has wider applicability, but also can reduce more redundant parameters making the found parameter reduction with a lower cardinality, and it is easier to find the parameter reduction of fuzzy soft sets. Show more
Keywords: Soft set, fuzzy soft set, parameter reduction, difference
DOI: 10.3233/JIFS-232657
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8805-8821, 2023
Authors: Muthazhagan, B. | Ravi, T. | Rajinigirinath, D.
Article Type: Research Article
Abstract: Lung cancer is the prevalent malignancy afflicting both men and women, mostly affects the chain smokers. The lung CT images are examined to identifying the abnormalities, but diagnosing lung cancer with CT images is time-consuming and difficult task. In this work, a novel Sooty-LuCaNet has been proposed in which the best features are selected using sooty tern optimization to reduces computational complexity of neural network. Initially, the denoised CT images are segmented using Grabcut technique to separate the lung nodules by eliminating the background distortions. The deep learning based Shufflenet is used to extract the structural features from the segmented …nodule and the textural features from the enhanced images. Afterwards, the sooty tern optimization (STO) algorithm is applied to select the most relevant features from the extracted features from the ShuffleNet. Finally, the classification process is carried out to differentiate the normal, small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) from the CT images. The experimental findings show the robustness of the proposed Sooty-LuCaNet based on the specific metrics namely sensitivity, accuracy, specificity, recall, precision and F1 score. An average classification accuracy of 99.16% is achieved for detection and classification of lung cancer. Show more
Keywords: Lung cancer, computed tomography, deep learning, Shufflenet, sooty tern optimization algorithm
DOI: 10.3233/JIFS-232875
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8823-8836, 2023
Authors: Ren, Rongrong | Wang, Hailong | Meng, Xinyu | Zhao, Meng
Article Type: Research Article
Abstract: Many businesses and organizations consider group decision making (GDM) to be an important decision-making strategy for dealing with complex decision-making difficulties. Although it is acknowledged that the difference in decision makers’ assessment scales has a significant impact on decision results, how to eliminate the difference in decision makers’ evaluation scales in the decision-making process has not been investigated further. In this research, the non-consensus of MAGDM is studied considering the difference of expert evaluation scale, and an improved two-stage multi-attribute group decision making method (MAGDM) is proposed. The example and comparative analysis of annual bonus allocation in engineering businesses validate …the effectiveness and operability of this system. Simultaneously, the approach is improved to handle the MAGDM problem of tiny samples, and the method’s problem of inadequate information is illustrated by numerical examples. The research presented in this work gives a practicable approach and idea for investigating the eradication of decision-maker evaluation scale disparities in MAGDM, and it demonstrates the importance of decision-maker evaluation scale differences in theoretical research and practical management. Show more
Keywords: Multi-attribute group decision making (MAGDM), expert evaluation scale, relative entropy, massive alternatives, normal distribution
DOI: 10.3233/JIFS-233618
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8837-8858, 2023
Authors: Cho, Seung-Beom | Jeong, Si-Hwa | Yu, Jae-Wook | Choi, Jae-Boong | Kim, Moon Ki
Article Type: Research Article
Abstract: Despite the significant improvements in the detection and diagnosis of plant diseases at an early stage facilitated by deep learning technology, there are challenges associated with the generalization performance of deep learning models. These problems from the differences between in-field and in-lab data, as well as the heterogeneity of training and prediction data features. In the case of tomato leaf diseases, the PlantVillage dataset is widely used and has already demonstrated accuracy of more than 99%. However, using trained model based on this dataset to predict in-field data results in low accuracy due to domain differences and heterogeneous features. In …this paper, we propose a domain adaptation method based on CycleGAN to solve this problem, followed by a preprocessing technique that utilizes both the OpenCV module and a segmentation model based on U-Net for the best generalization performance. The classification accuracy is evaluated by applying the DenseNet121 model trained on the PlantVillage dataset to the images generated by CycleGAN. Our results demonstrate, with an F1-score of 95.6%, that our domain adaptation method between the two domains is effective in mitigating the effect of domain shift. Show more
Keywords: Image processing, leaf classification, deep learning, CycleGAN, domain adaptation, tomato leaf disease
DOI: 10.3233/JIFS-230561
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8859-8870, 2023
Authors: Wang, Ru | Peng, Kexin | Liu, Fang | Li, Shugang
Article Type: Research Article
Abstract: With the increasing of online social behavior, social relationships have an important impact on consumer negative comment behavior (CNCB) on social commerce platforms. Existing studies lack to describe CNCB influenced by social relationships on social commerce platforms from the perspective of well-thought-out planning results, and the proposed structural equation models in previous studies have been difficult to predict CNCB. Hence, this study proposes a new structural equation model (SEM) and artificial neural network (ANN) model to deeply explore and reveal the generation mechanism of CNCB in the context of social commerce platforms based on the theory of planned behavior (TPB). …We regard social support as a moderating effect and construct a consumer negative comment planning behavior model (CNCPBM). The results of the data analysis show CNCPBM is supported. This study provides an important theoretical and practical contribution to CNCB, and offers practical management enlightenment for the managers of social commerce platforms. Show more
Keywords: Social commerce platforms, theory of planned behavior, artificial neural network, social support, negative comment behavior
DOI: 10.3233/JIFS-230563
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8871-8888, 2023
Authors: Wu, Meiqin | Yang, Jindou | Fan, Jianping
Article Type: Research Article
Abstract: With the continuous improvement and development of various decision-making methods, it has led to the widespread use of fuzzy sets and fuzzy numbers. At the same time, the application of decision-making methods in different fuzzy environments has been very effective in addressing the deficiencies in existing research. At present, triangular fuzzy numbers have been widely used in the evaluation aspects of various decision making methods, and the proposed R-number effectively solve the uncertainty involving problems related to future events, but the existing research based on the TOPSIS method in the R-number environment has not yet been clearly applied to the …triangular fuzzy number environment, and the indifference threshold-based attribute ratio analysis (ITARA) method in the fuzzy environment has yet to be extended. Therefore, this paper proposes a fuzzy indifference threshold-based attribute ratio analysis (FITARA) method based on triangular fuzzy numbers for solving the problem of determining attribute weights in the multi-attribute decision-making process. Secondly, the various risks of the decision environment and the impact on future events are considered and R-number are used to solve this puzzle. In addition, the incorporation of risk perception factors in the context of the existing RTOPSIS method considering multiple risk factors and the use of Manhattan distances to optimize the large number of operations in the process of the method resulted in the development of the FITARA-RTOPSIS model. Finally, the proposed FITARA-RTOPSIS method is applied to the problem of siting emergency supplies storage depots, and the effectiveness of the proposed method is verified through comparative analysis. Show more
Keywords: FITARA, R-number, RTOPSIS, Manhattan distance, TFN
DOI: 10.3233/JIFS-232393
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8889-8905, 2023
Authors: Shyama, S. | Iyer, Radha R.
Article Type: Research Article
Abstract: The attractive properties of the hypercube graph such as its diameter, good connectivity, and symmetry have made it a popular topology for the design of multi-computer interconnection networks. Efforts to improve some of these properties have led to the evolution of hypercube variants. Let c be the proper coloring of graph G , where the neighboring vertices will get individual colors. Coloring c is irregular if distinct vertices have distinct color codes and the least number of colors that ought to receive an irregular coloring is the irregular chromatic number, χir (G ). In this paper, we …discuss the irregular coloring and find the irregular chromatic number for the hypercube graph Q n and some of its variants using binomial coefficients for the Locally twisted cube graph LTQ n , Crossed cube graph CQ n and two types of Fractal cubic network graph FCNG 1 (k ) and FCNG 2 (k ). Show more
Keywords: Irregular coloring, irregular chromatic number, hypercube graph, variants of hypercube graph
DOI: 10.3233/JIFS-232471
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8907-8913, 2023
Authors: Prabhakaran, Sudarsan | Ayyamperumal, Niranjil Kumar
Article Type: Research Article
Abstract: This manuscript proposes an automated artifacts detection and multimodal classification system for human emotion analysis from human physiological signals. First, multimodal physiological data, including the Electrodermal Activity (EDA), electrocardiogram (ECG), Blood Volume Pulse (BVP) and respiration rate signals are collected. Second, a Modified Compressed Sensing-based Decomposition (MCSD) is used to extract the informative Skin Conductance Response (SCR) events of the EDA signal. Third, raw features (edge and sharp variations), statistical and wavelet coefficient features of EDA, ECG, BVP, respiration and SCR signals are obtained. Fourth, the extracted raw features, statistical and wavelet coefficient features from all physiological signals are fed …into the parallel Deep Convolutional Neural Network (DCNN) to reduce the dimensionality of feature space by removing artifacts. Fifth, the fused artifact-free feature vector is obtained for neutral, stress and pleasure emotion classes. Sixth, an artifact-free feature vector is used to train the Random Forest Deep Neural Network (RFDNN) classifier. Then, a trained RFDNN classifier is applied to classify the test signals into different emotion classes. Thus, leveraging the strengths of both RF and DNN algorithms, more comprehensive feature learning using multimodal psychological data is achieved, resulting in robust and accurate classification of human emotional activities. Finally, an extensive experiment using the Wearable Stress and Affect Detection (WESAD) dataset shows that the proposed system outperforms other existing human emotion classification systems using physiological data. Show more
Keywords: Emotional reactivity, physiological signals, modified compressed sensing, motion artifacts, deep convolutional neural network, random forest deep neural network
DOI: 10.3233/JIFS-232662
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8915-8929, 2023
Authors: Zhao, Yiming | Zhao, Hongdong | Zhang, Xuezhi | Liu, Weina
Article Type: Research Article
Abstract: In Intelligent Transport Systems (ITS), vision is the primary mode of perception. However, vehicle images captured by low-cost traffic cameras under challenging weather conditions often suffer from poor resolution and insufficient detail representation. On the other hand, vehicle noise provides complementary auditory features that offer advantages such as environmental adaptability and a large recognition distance. To address these limitations and enhance the accuracy of low-quality traffic surveillance classification and identification, an effective audio-visual feature fusion method is crucial. This paper presents a research study that establishes an Urban Road Vehicle Audio-visual (URVAV) dataset specifically designed for low-quality images and noise …recorded in complex weather conditions. For low-quality vehicle image classification, the paper proposes a simple Convolutional Neural Network (CNN)-based model called Low-quality Vehicle Images Net (LVINet). Additionally, to further enhance classification accuracy, a spatial channel attention-based audio-visual feature fusion method is introduced. This method converts one-dimensional acoustic features into a two-dimensional audio Mel-spectrogram, allowing for the fusion of auditory and visual features. By leveraging the high correlation between these features, the representation of vehicle characteristics is effectively enhanced. Experimental results demonstrate that LVINet achieves a classification accuracy of 93.62% with reduced parameter count compared to existing CNN models. Furthermore, the proposed audio-visual feature fusion method improves classification accuracy by 7.02% and 4.33% when compared to using single audio or visual features alone, respectively. Show more
Keywords: Vehicle classification, feature fusion, convolutional neural network, low-quality images
DOI: 10.3233/JIFS-232812
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8931-8944, 2023
Authors: Chen, Hao | Su, Ze | Xu, Xiangqian
Article Type: Research Article
Abstract: The rapid development of global information technology, especially the emergence and widespread application of the Internet, has enabled information technology to quickly penetrate into various fields of the economy and society. Informatization and networking have become important features of today’s era. However, while people enjoy the tremendous progress brought by information technology to humanity, the openness and security vulnerabilities of computer networks have also made network information security issues increasingly prominent. The invasion of hackers, the continuous generation and spread of computer virus, and the rampant use of rogue software have all caused great economic losses to individuals, enterprises, and …countries. The computer network security evaluation is a multiple-attribute group decision making (MAGDM). Then, the TODIM and TOPSIS method has been established to deal with MAGDM issues. The interval neutrosophic sets (INSs) are established as an effective tool for representing uncertain information during the computer network security evaluation. In this manuscript, the interval neutrosophic number TODIM-TOPSIS (INN-TODIM-TOPSIS) method is established to solve the MAGDM under INSs. Finally, a numerical example study for computer network security evaluation is established to validate the INN-TODIM-TOPSIS method. The main research contribution of this paper is established: (1) the INN-TODIM-TOPSIS method is put up for MAGDM with INSs; (2) the INN-TODIM-TOPSIS method is put up for computer network security evaluation and were compared with existing methods; (3) Through the detailed comparison, it is evident that INN-TODIM-TOPSIS method for computer network security evaluation proposed in this paper are effective. Show more
Keywords: Multiple-attribute group decision making (MAGDM), Interval neutrosophic sets (INSs), TODIM method, TOPSIS method, Computer network security evaluation
DOI: 10.3233/JIFS-233181
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8945-8957, 2023
Authors: Wang, Yixuan | Zhang, Xiaowen
Article Type: Research Article
Abstract: The lean management and innovation capability evaluation of technological small and medium sized enterprises is a classical multi-attributes group decision-making (MAGDM). Recently, the probabilistic hesitant fuzzy sets (PHFSs) have been extended to apply in many fields. However, the existing models don’t evaluate the alternative considering the psychological factors. Thus, in this paper, an extended probabilistic hesitant fuzzy grey relational analysis (PHF-GRA) method is proposed to reduce the restrictions of GRA method by combining with cumulative prospect theory (CPT), considering the psychological preference. In addition, the PHFSs assigns probability values to different degrees of hesitancy, which shows its superiority in complex …environment. At the same time, the weight vectors of each attribute are calculated by the entropy values of different foreground decision elements. Then, probabilistic hesitant fuzzy GRA (PHF-GRA) model based on CPT model is constructed for MAGDM under PHFSs. Finally, a practical example study for lean management and innovation capability evaluation of technological small and medium sized enterprises is constructed to validate the proposed GRA (PHF-GRA) model based on model CPT and some comparative studies are constructed to verify the applicability. Show more
Keywords: Multi-attributes group decision-making (MAGDM), probabilistic hesitant fuzzy sets (PHFSs), grey relational analysis (GRA) method, entropy, lean management and innovation capability evaluation
DOI: 10.3233/JIFS-233403
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8959-8972, 2023
Authors: Wang, Yahui | Chen, Hongchang | Liu, Shuxin | Li, Xing | Hu, Yuxiang
Article Type: Research Article
Abstract: With the continuous escalation of telecommunication fraud modes, telecommunication fraud is becoming more and more concealed and disguised. Existing Graph Neural Networks (GNNs)-based fraud detection methods directly aggregate the neighbor features of target nodes as their own updated features, which preserves the commonality of neighbor features but ignores the differences with target nodes. This makes it difficult to effectively distinguish fraudulent users from normal users. To address this issue, a new model named Feature Difference-aware Graph Neural Network (FDAGNN) is proposed for detecting telecommunication fraud. FDAGNN first calculates the feature differences between target nodes and their neighbors, then adopts GAT …method to aggregate these feature differences, and finally uses GRU approach to fuse the original features of target nodes and the aggregated feature differences as the updated features of target nodes. Extensive experiments on two real-world telecom datasets demonstrate that FDAGNN outperforms seven baseline methods in the majority of metrics, with a maximum improvement of about 5%. Show more
Keywords: Fraud detection, graph neural networks, telecommunication networks, feature fusion
DOI: 10.3233/JIFS-221893
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8973-8988, 2023
Authors: Yuvaraj, S. | Vijay Franklin, J.
Article Type: Research Article
Abstract: The predictions of cognitive emotions are complex due to various cognitive emotion modalities. Deep network model has recently been used with huge cognitive emotion determination. The visual and auditory modalities of cognitive emotion recognition system are proposed. The extraction of powerful features helps obtain the content related to cognitive emotions for different speaking styles. Convolutional neural network (CNN) is utilized for feature extraction from the speech. On the other hand, the visual modality uses the 50 layers of a deep residual network for prediction purpose. Also, extracting features is important as the datasets are sensitive to outliers when trying to …model the content. Here, a long short-term memory network (LSTM) is considered to manage the issue. Then, the proposed Dense Layer Model (DLM) is trained in an E2E manner based on feature correlation that provides better performance than the conventional techniques. The proposed model gives 99% prediction accuracy which is higher to other approaches. Show more
Keywords: Cognitive emotion recognition, deep learning, prediction, visual modality, handcrafted features
DOI: 10.3233/JIFS-230766
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8989-9005, 2023
Authors: Geng, Xiuli | Li, Yiqun | Zhang, Hongliu | He, Jianjia
Article Type: Research Article
Abstract: Product-service system (PSS) has attracted attention of manufacturers to shift from product-providing to solution-providing, which is a marketable set of products and services. The existing researches emphasize the fulfillment of individualized customer requirements through different PSS configurations. The PSS planning phase is of high importance in generating conceptual schemes, which translates customer requirements (CRs) to design requirements (DRs). In this paper, a systematic decision-making approach based on QFD is put forward aiming to configure the PSS design requirements (DRs). To address the uncertainty and hesitancy in QFD modeling, a hesitant fuzzy linguistic term sets (HFLTSs) is applied to elicit the …experts’ linguistic preferences in evaluating the importance of CRs and the relationships between CRs and DRs. To dealing with the group decision-making problems concerning the HFLTSs, the min-upper operator and the max-lower operator assemble the experts’ evaluation results into a linguistic interval, and then the numerical results can be obtained by using the 2-tuple linguistic representation model and the interval preference degree computation. A non-linear 0-1 programming model is proposed to select the target DRs’ specifications for maximizing customer satisfaction under cost constraint. In order to objectively determine the satisfaction degree of each optional specification of DR, the information axiom is introduced to construct the objective function via information content computation. To deal with the qualitative DRs, HFLTSs and information axiom are combined and hesitant information axiom (HIA) is proposed. Finally, a DRs optimization model is established using HIA and the imprecision method. A case study is carried out to demonstrate the effectiveness of the optimal PSS planning approach developed. Show more
Keywords: Product-service system (PSS), design requirement, information axiom, hesitant fuzzy linguistic term set, non-linear programming
DOI: 10.3233/JIFS-231329
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9007-9028, 2023
Authors: Kai, Wei
Article Type: Research Article
Abstract: In this study, we focus on the analysis of factors influencing the siting decision of coal emergency reserve centers. Specifically, we first draw on the quality function deployment theory in marketing to logically integrate the ideas of this study. On this basis, we adopted an interdisciplinary fuzzy decision-making method, namely the G1-entropy method, to quantitatively evaluate the research of this paper. Thereafter, we constructed a three-level index system based on the characteristics of the coal emergency reserve site selection, and used the G1-entropy value method to calculate the weights of the indicators in the coal emergency reserve center siting decision …index system and obtain the results. Our research findings have found that the three key indicators of coal conventional reserve, emergency coal transportation methods, and emergency response time play a crucial role in the decision-making of coal emergency reserve center location. Therefore, we propose specific countermeasures and suggestions for these three key indicators. Our study can provide support for the government to better select the location of emergency coal reserves, better improve the national energy layout, and provide support for relevant decision makers on how to better reserve coal. The location of the emergency coal reserve center can better play the role of strategic reserve to stabilize the market function, effectively respond to the impact of various events on the energy market, and can make corresponding suggestions to the construction of the national energy security reserve system. Show more
Keywords: Emergency reserve center, site selection decision, quality function deployment theory, G1 method, entropy value method
DOI: 10.3233/JIFS-232299
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9029-9052, 2023
Authors: Lyu, Aobo | Jiang, Jingjing | Zhou, Liang
Article Type: Research Article
Abstract: Central Bank Digital Currency (CBDC) pledges to realize a vast array of new functionalities, such as frictionless consumer payment and money-transfer systems, as well as precise supervision of money circulation, thereby enabling a number of new financial instruments and monetary policy levers. This study proposes, from a system feedback loop and cybernetics perspective, a Dynamic Issuance Mechanism (DIM) for CBDC that can theoretically enhance the vitality of economic operations. In accordance with this mechanism, the central bank implements dynamic issuance by monitoring cash leakage in real-time, so as to maintain the stability of the amount of money circulating on the …market, thereby boosting the currency turnover rate and financial vitality. To demonstrate the efficacy of the DIM, we employ the Agent-Based Modeling (ABM) tool to develop a macroeconomic simulation model for qualitative analysis that includes four entities: Central Bank, households, firms, and commercial banks. The multi-cycle operation process of the model includes a variety of economic indicators demonstrating that DIM has the potential to boost economic vitality and social production efficiency without exerting an adverse effect on citizens’ incomes, commodity prices, or the stability of the macroeconomic system. Finally, the function principle and potential risks of DIM are explained from a systems perspective, which offers a novel perspective for the functional design of CBDC and highlights that the hierarchical structure is a meaningful domain as the developmental direction. Show more
Keywords: Central bank digital currency, agent-based modeling, dynamic issuance mechanism, system feedback, macroeconomic
DOI: 10.3233/JIFS-221244
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9053-9067, 2023
Authors: Fang, Jian | Lin, Xiaomei | Wu, Yue | An, Yi | Sun, Haoran
Article Type: Research Article
Abstract: As a deep learning network model, ResNet50 can effectively recognize facial expressions to a certain extent, but there are still problems such as insufficient extraction of local effective feature information and a large number of parameters. In this paper, we take ResNet50 as the basic framework to optimize and improve this network. Firstly, by analyzing the influence mechanism of the attention mechanism module on the network feature information circulation, the optimal embedding position of CBAM (Convolutional Block Attention Module) and SE modules in the ResNet50 network is thus determined to effectively extract local key information, and then the number of …model parameters is effectively reduced by embedding the depth separable module. To validate the performance of the improved ResNet50 model, the recognition accuracy reached 71.72% and 95.72% by ablation experiments using Fer2013 and CK+ datasets, respectively. We then used the trained model to classify the homemade dataset, and the recognition accuracy reached 92.86%. In addition, compared with the current more advanced methods, the improved ResNet50 network model proposed in this paper can maintain a balance between model complexity and recognition ability and can provide a technical reference for facial expression recognition research. Show more
Keywords: ResNet50, SE, CBAM, depth separability, lightweight
DOI: 10.3233/JIFS-230524
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9069-9081, 2023
Authors: Tan, Simin | Zhang, Ling | Sheng, Yuhong
Article Type: Research Article
Abstract: This paper mainly discusses the extinction and persistent dynamic behavior of infectious diseases with temporary immunity. Considering that the transmission process of infectious diseases is affected by environmental fluctuations, stochastic SIRS models have been proposed, while the outbreak of diseases is sudden and the interference terms that affect disease transmission cannot be qualified as random variables. Liu process is introduced based on uncertainty theory, which is a new branch of mathematics for describing uncertainty phenomena, to describe uncertain disturbances in epidemic transmission. This paper first extends the classic SIRS model from a deterministic framework to an uncertain framework and constructs …an uncertain SIRS infectious disease model with constant input and bilinear incidence. Then, by means of Yao-Chen formula, α-path of uncertain SIRS model and the corresponding ordinary differential equations are obtained to introduce the uncertainty threshold function R 0 * as the basic reproduction number. Moreover, two equilibrium states are derived. A series of numerical examples show that the larger the value of R 0 * , the more difficult it is to control the disease. If R 0 * ≤ 1 , the infectious disease will gradually disappear, while if R 0 * > 1 , the infectious disease will develop into a local epidemic. Show more
Keywords: Uncertainty theory, SIRS epidemic model, basic reproduction number, asymptotic behavior
DOI: 10.3233/JIFS-223439
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9083-9093, 2023
Authors: Yang, Chun | Sun, Wei | Li, Ningning
Article Type: Research Article
Abstract: In the past decade, people’s life is getting better and better, and the attention to sports competition is also increasing. In the current information age, sports and athletes’ data are very important, especially team football. In college, football coaches can use the data to analyze the situation of college football players and opposing players to better specify the corresponding tactics to win the game. However, at present, most of the data results need to be manually recorded and counted on the spot or after the game. In the process of statistics, Zhou Jing will inevitably have omissions and other problems. …For this problem, a method based on space-time graph convolution. In the process, machine vision and motion recognition methods are combined, and the joint movements of different football players are extracted through the pose estimation method to obtain motion recognition results. To ented the methods on the KTH dataset. The results showed that the football motion recognition using the research method reached 98% on the dataset, which significantly improved the accuracy of nearly 5% over the existing state-of-the-art methods. At the same time, the accuracy rate of football movements was less than 5%. This means that the research method can effectively identify football sports, and can be widely used in other fields, and promote the development of human movement recognition in human-computer interaction and smart city and other fields. Show more
Keywords: Space-time graph convolution, football teaching, motion recognition
DOI: 10.3233/JIFS-230890
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9095-9108, 2023
Authors: Xie, Canrong | Wang, Jianjun | Wu, Zhiwen | Nie, Shaojun | Hu, Yichan | Huang, Sheng
Article Type: Research Article
Abstract: Machine learning (ML) has been applied in civil engineering to predict the compressive strength of concrete with high accuracy. In this paper, five boosting ensemble algorithms, i.e., XGBoost, AdaBoost, GBDT, LightGBM, and CatBoost, were used to predict the compressive strength of high-performance concrete (HPC). The models were evaluated using performance indicators such as R2 , root mean square error (RMSE), and mean absolute error (MAE). The results showed that the CatBoost model had the highest accuracy with a R2 (0.970) and a RMSE (2.916). The prediction accuracy of the model was increased through hyperparameter optimization, which got a higher …with a R2 (0.975) and a RMSE (2.863). Meanwhile, the SHapley Additive exPlanations (SHAP) method was used to explain the output results of the optimal model (CatBoost), which generated explainable insights that further revealed the complex relationship between the prediction model parameters. The results showed that AGE, W/B, and W/C had the most impact on high-performance concrete compressive strength (HPCCS) prediction, which was similar to the results of sensitivity analysis. This study provided a theoretical basis and technical guidance for developing the mix design of a new high-performance concrete (HPC) system. In the future, the interpretable results of the model output should be iteratively checked and validated in the actual laboratory in order to provide guidance for engineering practice. Show more
Keywords: High-Performance Concrete (HPC), compressive strength, machine learning, boosting algorithms, game theory
DOI: 10.3233/JIFS-231021
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9109-9122, 2023
Authors: Du, Xianjun | Wu, Hailei
Article Type: Research Article
Abstract: Convolutional neural networks (CNNs) have made significant progress in the field of cloud detection in remote sensing images thanks to their powerful feature representation capabilities. Existing methods typically aggregate low-level features containing details and high-level features containing semantics to make full use of both features to accurately detect cloud regions. However, CNNs are still limited in their ability to reason about the relationships between features, while not being able to model context well. To overcome this problem, this paper designs a novel feature interaction graph convolutional network model that extends the feature fusion process of convolutional neural networks from Euclidean …space to non-Euclidean space. The algorithm consists of three main components: remote sensing image feature extraction, feature interaction graph reasoning, and high-resolution feature recovery. The algorithm constructs a feature interaction graph reasoning (FIGR) module to fully interact with low-level and high-level features and then uses a residual graph convolutional network to infer feature higher-order relationships. The network model effectively alleviates the problem of a semantic divide in the feature fusion process, allowing the aggregated features to fuse valuable details and semantic information. The algorithm is designed to better detect clouds with complex cloud layers in remote sensing images with complex cloud shape, size, thickness, and cloud-snow coexistence. Validated on publicly available 38-Cloud and SPARCS datasets and the paper’s own Landsat-8 cloud detection dataset with higher spatial resolution, the proposed method achieves competitive performance under different evaluation metrics. Code is available at https://github.com/HaiLei-Fly/CloudGraph . Show more
Keywords: Remote sensing image cloud detection, feature interaction, graph convolutional networks, image segmentation, interpretability
DOI: 10.3233/JIFS-223946
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9123-9139, 2023
Authors: Silva, Victor L. | de Menezes, José Maria P.
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-220232
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9141-9156, 2023
Authors: yang, Chen | Jinming, Liu | Jian, Mao
Article Type: Research Article
Abstract: The unintentional electromagnetic radiation of digital electronic devices during operation can cause information leakage and threaten the information security of the system. In order to explore the leakage level of important information, it is necessary to separate the electromagnetic leakage signal from the complex environmental electromagnetic wave, so the blind source separation technology is studied.Traditional blind source separation methods are mainly unsupervised learning methods, and their separation results are not as expected. In recent years, deep learning technology based on supervised learning has achieved good results in speech separation and other fields, indicating that it is a feasible method.In order …to solve the problem of separating source signals from mixed electromagnetic radiation signals and reducing noise interference in electromagnetic safety detection. this paper proposes a Deep Focusing U-Net neural network, which makes the model pay more attention to the features at deeper layer. The network is applied to the blind separation of LCD electromagnetic leakage signals, and the good separation performance proves the effectiveness of this method. Show more
Keywords: Blind source separation, Deep Focusing U-Net, Electromagnetic signals
DOI: 10.3233/JIFS-223568
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 9157-9167, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]