Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Huang, Hangxinga | Ma, Lindonga; b; *
Affiliations: [a] Xingzhi College, Zhejiang Normal University, Jinhua, China | [b] School of Management, Zhejiang University of Technology, Hangzhou, China
Correspondence: [*] Corresponding author. Lindong Ma, E-mail: [email protected].
Abstract: In late 2019, coronavirus disease (COVID-19) began to spread globally and is highly contagious. Due to its exceptionally rapid spread and high mortality rate, it is not yet possible to be eradicated. In order to halt the spread of COVID-19, there is a pressing need for effective screening of infected patients and immediate medical intervention. The absence of rapid and accurate methods to identify infected patients has led to a need for a model for early diagnosis of patients with and suspected of having COVID-19 to reduce the probability of missed diagnosis and misdiagnosis. Modern automatic image recognition techniques are an important diagnostic method for COVID-19. The aim of this thesis is to propose a novel deep learning technique for the automatic diagnosis and recognition of coronavirus disease (COVID-19) on X-ray images using a transfer learning approach. A new dataset containing COVID-19 information was created by merging two publicly available datasets. This dataset includes 912 COVID-19 images, 4273 pneumonia images, and 1583 normal chest X-ray images. We used this dataset to train and test the deep learning algorithm. With this new dataset, two pre-trained models (Xception and ResNetRS50) were trained and validated using transfer learning techniques. 3-class images were identified (Pneumonia vs. COVID-19 vs. Normal), and the two models generated validation accuracies of 90% and 97.21%, respectively, in the experiments. This demonstrates that our proposed algorithm can be well applied in diagnosing patients with lung diseases. In this study, we found the ResNetRS50 model to be superior.
Keywords: ResNetRS50, deep learning, X-ray images, transfer learning, COVID-19
DOI: 10.3233/JIFS-232866
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 8135-8144, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]