Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ju, Hongmei | Yi, Huan; *
Affiliations: School of Statistics and Data Science, Beijing WUZI University, Beijing, China
Correspondence: [*] Corresponding author. Huan Yi, School of Information, Beijing WUZI University, Beijing, China. E-mail: [email protected].
Abstract: The classification problem is a key area of research in machine learning. The Least Squares Support Vector Machine (LSSVM) is an important classifier that is commonly used to solve classification problems. Its widespread use stems from its replacement of the inequality constraint in the Support Vector Machine (SVM) with the equality constraint, which transforms the convex quadratic programming (QP) problem of SVM into the solution of linear equations. However, when dealing with multi-class classification problems, LSSVM faces the challenges of lack of sparsity and sample noises, which can negatively impact its performance. Based on the modeling characteristics and data distribution of the multi-class LSSVM model, this paper proposes two improvements and establishes an improved fuzzy sparse multi-class least squares support vector machine (IF-S-M-LSSVM). The first improvement adopts a non-iterative sparse algorithm, which can delete training sample points to different degrees by adjusting the sparse ratio. The second improvement addresses the impact of sample noise on determining the optimal hyperplane by adding a fuzzy membership degree based on sample density. The advantages of the new model, in terms of training speed and classification accuracy, are verified through UCI machine learning standard data set experiments. Finally, the statistical significance of the IF-S-M-LSSVM model is tested using the Friedman and Bonferroni-Dunn tests.
Keywords: Least squares support vector machine, multi-class classification problem, fuzzy membership, sparse
DOI: 10.3233/JIFS-231738
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 5, pp. 7769-7783, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]