Bio-Medical Materials and Engineering - Volume 4, issue 3
Purchase individual online access for 1 year to this journal.
Price: EUR 245.00
Impact Factor 2024: 1.0
The aim of
Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems.
Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
Abstract: An apparatus and test method were developed to determine the elastic stiffness and damping coefficient of human cartilage in compression. An underdamped, counterbalanced beam applied a sudden compressive force to a full-thickness cylindrical specimen of articular cartilage. The initial oscillatory response decayed to steady state creep after approximately 10 cycles of oscillation. The results were consistent with a Voigt phenomenological model with linear stiffness and damping terms. Standard dynamics analysis of the transient oscillatory response enabled the elastic stiffness to be determined from the frequency and the damping coefficient to be derived from the logarithmic decrement of the decay of…the oscillations. The relationship between the mechanical properties and structure of cartilage was determined by treating specimens with two specific proteolytic enzymes. Digestion and removal of proteoglycans alone with cathepsin D caused the damping coefficient to decrease with no change in elastic stiffness. The action of leukocyte elastase on collagen caused a decrease in both damping coefficient and elastic stiffness. It was concluded that the collagen fibrils in cartilage largely control the elastic response while the viscous response is controlled largely by the hydrated proteoglycans. The effects of cartilage thickness was also examined and found to be inversely proportional to the elastic stiffness. It is suggested that this method could be used to uncouple elastic and viscous properties of other viscoelastic materials.
Show more