Bio-Medical Materials and Engineering - Volume 24, issue 1
Purchase individual online access for 1 year to this journal.
Price: EUR 245.00
Impact Factor 2024: 1.0
The aim of
Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems.
Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
Abstract: The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.
Abstract: Ischemic mitral valve (MV) is a common complication of pathologic remodeling of the left ventricle due to acute and chronic coronary artery diseases. It frequently represents the pathologic consequences of increased tethering forces and reduced coaptation of the MV leaflets. Ischemic MV function has been investigated from a biomechanical perspective using finite element-based computational MV evaluation techniques. A virtual 3D MV model was created utilizing 3D echocardiographic data in a patient with normal MV. Two types of ischemic MVs containing asymmetric medial-dominant or symmetric leaflet tenting were modeled by altering the configuration of the normal papillary muscle (PM) locations. Computational…simulations of MV function were performed using dynamic finite element methods, and biomechanical information across the MV apparatus was evaluated. The ischemic MV with medial-dominant leaflet tenting demonstrated distinct large stress distributions in the posteromedial commissural region due to the medial PM displacement toward the apical-medial direction resulting in a lack of leaflet coaptation. In the ischemic MV with balanced leaflet tenting, mitral incompetency with incomplete leaflet coaptation was clearly identified all around the paracommissural regions. This computational MV evaluation strategy has the potential for improving diagnosis of ischemic mitral regurgitation and treatment of ischemic MVs.
Show more
Abstract: A highly sensitive chemiluminescent immunoassay (CLIA) using a sensitive organic photodetector was developed to detect human cortisol, an important biomarker for stress-related diseases. The developed CLIA was performed onto gold-coated glass chips, on which anti-cortisol antibodies were immobilised and chemiluminescent horseradish peroxidase-luminol-peroxide reactions were generated. Using cortisol-spiked artificial saliva samples, the CLIA biosensor showed a linear range of detection between 0.1 ng/mL and 175 ng/mL and a detection limit of 80 pg/mL. The sensor response was highly specific to cortisol and did not vary significantly between assays. The results indicate the potential clinical application of the CLIA sensor. Furthermore, the…simple layered structure of the organic photodetector may encourage the realisation of integrated optical biosensors for point-of-use measurement of salivary cortisol levels.
Show more
Abstract: In this study, a urea biosensor was prepared by the immobilization of urease onto the sensitive membrane of an extended-base bipolar junction transistor. The pH variation was used to detect the concentration of urea. The SnO2/ITO glass, fabricated by sputtering SnO2 on the conductive ITO glass, was used as a pH-sensitive membrane, which was connected with a commercial bipolar junction transistor device. The gels, fabricated by the poly vinyl alcohol with pendent styrylpyridinium groups, were used to immobilize the urease. This readout circuit, fabricated in a 0.35-um CMOS 2P4M process, operated at 3.3V supply voltage. This circuit occupied an area…of 1.0 mm × 0.9 mm. The dynamic range of the urea biosensor was from 1.4 to 64 mg/dl at the 10 mM phosphate buffer solution and the sensitivity of this range was about 65.8 mV/pUrea. The effect of urea biosensors with different pH values was considered, and the characteristics of urea biosensors based on EBBJT were described.
Show more
Abstract: Cell segmentation in phase contrast microscopy images lays a crucial foundation for numerous subsequent computer-aided cell image analysis, but it encounters many unsolved challenges due to image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose an interactive cell segmentation scheme over phase retardation features. After partitioning the images into phase homogeneous atoms, human annotations are propagated to unlabeled atoms over an affinity graph that is learned based on discrimination analysis. Then, an active query strategy is proposed for which the most informative unlabeled atom is selected for annotation, which is also propagated to…the other unlabeled atoms. Cell segmentation converges to quality results after several rounds of interactions involving both the user's intentions and characteristics of image features. Experimental results demonstrate that cells with different optical properties are well segmented via the proposed approach.
Show more
Abstract: Longitudinal stent compression (LSC) is a new failure mode not previously observed in coronary stents. This phenomenon occurs when the physician tries to cross the deployed stent with other devices. While this phenomenon has been observed with a number of stent designs, it seems more common with the Element stent. A computational LSC model using finite element analysis was developed. Computational simulations were performed on two representative coronary stents in the current market resembling Element and Endeavor in attempts to quantify individual contribution of the stent design pattern and connector number on LSC. Simulation results show that the connector number…plays the most significant role in the development of the LSC issue. The LSC could be easily tripled for the Element stent simply by increasing the connector number from two to three. The stent design pattern plays a secondary role in LSC. The LSC could be improved by up to 30% when the design pattern changes from the offset peak-to-peak design (Element) to the peak-to-peak design (Endeavor). Conclusions obtained from this paper may help clinical stent selection and future stent design optimization to reduce the risk associated with longitudinal stent compression.
Show more
Abstract: X-ray phase-contrast computed tomography (PC-CT) can provide the internal structure information of biomedical specimens with high-quality cross-section images and has become an invaluable analysis tool. Here a simple and fast reconstruction algorithm is reported for helical cone-beam differential PC-CT (DPC-CT), which is called the DPC-CB-SSRB algorithm. It combines the existing CB-SSRB method of helical cone-beam absorption-contrast CT with the differential nature of DPC imaging. The reconstruction can be performed using 2D fan-beam filtered back projection algorithm with the Hilbert imaginary filter. The quality of the results for large helical pitches is surprisingly good. In particular, with this algorithm comparable quality…is obtained using helical cone-beam DPC-CT data with a normalized pitch of 10 to that obtained using the traditional inter-row interpolation reconstruction with a normalized pitch of 2. This method will push the future medical helical cone-beam DPC-CT imaging applications.
Show more
Abstract: In this paper, we propose a novel method for the detection of microcalcifications using mathematical morphology and a support vector machine (SVM). First, the contrast in the original mammogram was improved by gamma correction and two carefully designed structural elements were used to enhance any microcalcifications. Next, the potential regions were extracted using our proposed dual-threshold technique. Finally, a SVM classifier was used to reduce the number of false positives. The performance of the proposed method was evaluated using the MIAS database. The experimental results demonstrated the efficiency and effectiveness of our method.
Keywords: feature extraction, mathematical morphology, microcalcification, support vector machine
Abstract: Breast cancer is the most common type of cancer occurring among women in the United States. Nitric oxide (NO) is endogenous signaling molecules that regulate biological processes. NO has the potential to induce either cancer progression or cancer cell apoptosis depending on intra-tumoral NO concentration. High levels of NO have a cytotoxic effect on cancer cells. A novel cytotoxic gas delivery system has been developed using NO-loaded echogenic liposomes (ELIP) for breast cancer treatment. Empty ELIP and NO-ELIP were prepared using the previously developed freezing-under-pressure method with modified lipid composition. Echogenicity of NO-ELIP was measured to determine the stability of…NO-ELIP. Two types of breast cancer cell (BCC) lines, MDA-MB-231 and MDA-MB-468, were utilized. MTT assay was performed after NO-ELIP treatment to determine BCC viability. Echogenicity data demonstrated improved stability of NO-ELIP with the use of BSA for resuspension of NO-ELIP. Cell death induced by NO-ELIP was not from lipid cytotoxicity but from NO. The cytotoxic effect of NO-ELIP on BCC was highly dependent on NO-ELIP concentration. NO-ELIP in concentration of 1.0–2.0 mg/ml induced dramatically decreased BCC viability. This novel cytotoxic gas delivery nanomedicine using liposomal carriers, NO-ELIP, has the potential to provide improved therapeutic effect for breast cancer treatment.
Show more
Keywords: Nanomedicine, liposome, nitric oxide, breast cancer, drug delivery system