Bio-Medical Materials and Engineering - Volume 18, issue 4-5
Purchase individual online access for 1 year to this journal.
Price: EUR 245.00
Impact Factor 2024: 1.0
The aim of
Bio-Medical Materials and Engineering is to promote the welfare of humans and to help them keep healthy. This international journal is an interdisciplinary journal that publishes original research papers, review articles and brief notes on materials and engineering for biological and medical systems.
Articles in this peer-reviewed journal cover a wide range of topics, including, but not limited to: Engineering as applied to improving diagnosis, therapy, and prevention of disease and injury, and better substitutes for damaged or disabled human organs; Studies of biomaterial interactions with the human body, bio-compatibility, interfacial and interaction problems; Biomechanical behavior under biological and/or medical conditions; Mechanical and biological properties of membrane biomaterials; Cellular and tissue engineering, physiological, biophysical, biochemical bioengineering aspects; Implant failure fields and degradation of implants. Biomimetics engineering and materials including system analysis as supporter for aged people and as rehabilitation; Bioengineering and materials technology as applied to the decontamination against environmental problems; Biosensors, bioreactors, bioprocess instrumentation and control system; Application to food engineering; Standardization problems on biomaterials and related products; Assessment of reliability and safety of biomedical materials and man-machine systems; and Product liability of biomaterials and related products.
Abstract: Complex three-dimensional structures can “a priori” be built layer-by-layer with a large number of different components, including various cell types, polyelectrolytes, drugs, proteins, peptides or DNA. Our approach is based on the spraying of such elements in order to form a highly functionalized and structured biomaterial. The proposed route will allow the control at the surface and in depth the distribution of the different included elements (matrix and cells). The main objective of this work concerns the buildup of biomaterials aimed to reconstruct biological tissue. The proposed ways are highly innovative and consist in a simple and progressive spraying…of all the elements constituting finally the biomaterial. We report here that it is possible (i) to build an alginate gel by alternate spraying of alginate and Ca2+ ; (ii) to spray active alginate gel and cells; (iii) to build layer-by-layer an active reservoir under and on the top of this sprayed gel and cells; (iv) to follow the activity of these sprayed cells with time; (v) to propose a three-dimensional sprayed structure for tissue engineering application.
Show more
Abstract: Objectives: to assess reliability and reproducibility of quantitative MRI (7 T) in assessing rat femoro-tibial cartilage volume. Methods: 5 healthy rat knees were scanned in vivo using a 7 T experimental imager. Sagittal high resolution 3D Gradient Echo with fat suppression sequences were performed with a dedicated home-made 2-elements array coil. 3D MRI sets were used to perform manual segmentation of the 3 cartilage compartments (femoral groove, medial and lateral tibial plateaus) by using a tactile screen. To evaluate inter- and intra-observer reproducibilities, the segmentation procedure was done blindly by two trained observers. One observer repeated the operation twice,…with a period of 10 months between both readings. Results: the mean duration to manually segment all the slices covering the cartilaginous joint was 4 hours. On the one hand, the inter-observer root mean square of coefficients of variation was 9.1%, 6.2%, 9.6% for the femoral, medial and lateral tibial compartments respectively. On the other hand, the intra-observer reproducibility was 2.1%, 3.2%, 2.5% for these cartilage compartments cited above. Conclusion: the image quality obtained at 7 Teslas with our dedicated coil allowed segmentation of the cartilage compartments with good reproducibility. This study demonstrated that MRI is a useful technology to provide a non-invasive and reliable assessment of rat knee cartilage volume.
Show more
Keywords: Cartilage, quantitative MRI, in vivo, reproducibility, volume, rat
Abstract: Aim: to determine if chondrocytic Hsp70 induction, via intra-articular injections of a reversible proteasome inhibitor (MG132), can protect articular chondrocytes from cellular death in experimental rat OA knee induced surgically by anterior cruciate ligament transection (ACLT). Materials and methods: ACLT was performed on D0. Histological lesions in naive (sham) controls (ACLT+saline) and treated (ACLT+MG132) rats were assessed according to Mankin's score. Repeated intra-articular injections (1.5 μM MG132 or saline were performed on D1, D7, D14 and D21. Rats were sacrificed sequentially on D7, D14 and D28. Detection of active caspase-3 and protein expression of Hsp70 was also determined on…D7, D14 and D28 by immunostaining methods. Results: MG132 significantly reduced OA lesions on D28 in the MG132 treated group. The expression of Hsp70 increased 11-fold in the MG132-treated group versus 2-3-fold in ACLT-control rats on D28. Concomitantly, cells expressing caspase-3 increased 4-fold in ACLT model and decreased 2-fold with MG132 treatment. Conclusions: Intra-articular induction of Hsp70 by MG132 could be a safe and interesting tool in chondrocytes protection from cellular injuries and thus might be a novel chondroprotective modality in rat OA.
Show more
Abstract: The purpose of this study was to assess 2 Gd-based macromolecular intravascular contrast agents (P792, rapid clearance blood pool agent (rBPA) and P717, slow clearance blood pool agent (sBPA)) compared to Gd-DOTA (representative extracellular non specific agent) in MR imaging of knee rabbit experimental synovitis. Quantitative dynamic contrast enhanced MRI (qDCE-MRI) after intravascular injection of a low molecular weight contrast agent of 0.56 kDa (Gd-DOTA) and 2 high-molecular-weight contrast agents of 6.47 kDa (P792) and 52 kDa (P717) was performed in rabbits with carrageenan-induced synovitis of the right knee. P792 and P717 provided a progressive and persistent enhancement of arthritic…synovial tissue while Gd-DOTA provided an early and rapidly declining enhancement with a concomitant diffusion in synovial fluid, thus limitating delineation of synovial pannus. P792 allowed acquisition of high-quality MR arthrograms, due to both a better diffusion in synovial pannus (vs. P717) and a concomitant restricted diffusion into the synovial fluid (vs. Gd-DOTA). In fact, experimental rabbit synovitis represent a specific entity that favors the T1 effect of high-molecular-weight agents, and especially rBPA P792, entrapped in synovial pannus, without diffusion in the synovial fluid. Due to this lack of arthrographic effect, P792 accumulation could be specifically sequentially analyzed by qDCE-MRI for detecting, characterizing and monitoring synovial vascular permeability changes during mono- or polysynovitis.
Show more
Abstract: Bioreactors are defined as devices in which biological and/or biochemical processes develop under closely monitored and tightly controlled environmental and operating conditions (e.g. pH, temperature, mechanical conditions, nutrient supply and waste removal). In functional tissue engineering of musculoskeletal tissues, a bioreactor capable of controlling dynamic loading plays a determinant role. It has been shown that mechanical stretching promotes the expression of type I and III collagens, fibronectin, tenascin-C in cultured ligament fibroblasts (J.C.-H. Goh et al., Tissue Eng. 9 (2003), S31) and that human bone marrow mesenchymal stem cells (hBMMSC) – even in the absence of biochemical regulators – could…be induced to differentiate into ligament-like fibroblast by the application of physiologically relevant cyclic strains (G. Vunjak-Novakovic et al., Ann. Rev. Biomed. Eng. 6 (2004), 131; H.A. Awad et al., Tissue Eng. 5 (1999), 267; R.G. Young et al., J. Orthop. Res. 16 (1998), 406). Different bioreactors are commercially available but they are too generic to be used for a given tissue, each tissue showing specific mechanical loading properties. In the case of ligament tissue engineering, the design of a bioreactor is still an open question. Our group proposes a bioreactor allowing cyclic traction–torsion on a scaffold seeded with stem cells.
Show more