Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Frontiers in Biomedical Engineering and Biotechnology – Proceedings of the 2nd International Conference on Biomedical Engineering and Biotechnology, 11–13 October 2013, Wuhan, China
Article type: Research Article
Authors: Bernad, Sandor I. | Bosioc, Alin | Bernad, Elena S.; | Craina, Marius L.
Affiliations: Romanian Academy – Timisoara Branch, Centre for Fundamental and Advanced Technical Research, Bd. Mihai Viteazul 24, RO-300223, Timisoara, Romania | University of Medicine and Pharmacy “Victor Babes” Timisoara, Universitary Clinic “Bega”, P-ta Eftimie Murgu 2, RO-300041, Timisoara, Romania
Note: [] Corresponding author. E-mail: [email protected]
Abstract: The long-term success of arterial bypass surgery is often limited by the progression of intimal hyperplasia at the anastomosis between the graft and the native artery. The experimental models were manufactured from glass tubing with constant internal diameter of 8 mm, fashioned into a straight configuration and helical configuration. The aim of this study was to determine the three-dimensional flow structures that occur at the proximal anastomosis under pulsatile flow conditions, to investigate the changes that resulted from variations in the anastomosis angle and flow division, and to establishing the major differences between the straight and helical graft. In the anastomosis domain, a strong region of recirculation is observed near the occluded end of the artery, which forces the flow to move into the perfused host coronary artery. The proximal portion of the host tube shows weak counter-rotating vortices on the symmetry plane. The exact locations and strengths of the vortices in this region are only weakly dependent on Re. A detailed comparison of experimentally measured axial velocity patterns for straight and helical grafts confirm the very strong nature of the secondary flows in the helical geometry. The helical configuration promotes the mixing effect of vortex motion such that the flow particles are mixed into the blood stream disal to the anastomotic junction.
Keywords: Bypass graft, helical graft, hemodynamics, anastomosis
DOI: 10.3233/BME-130877
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 1, pp. 853-860, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]