Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hedia, R.S. | Barton, D.C.; | Fisher, J.
Affiliations: Department of Mechanical Engineering, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK | Department of Production Engineering, Mansoura University, Mansoura, Egypt
Note: [] Correspondence to: D.C. Barton, Department of Mechanical Engineering, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK.
Abstract: Previous studies have optimised the shape of a cemented stainless steel stem in order to minimise the fatigue notch factor Kf in the cement whilst at the same time maximising Kf in the proximal medial bone to prevent bone resorption [1]. The present study firstly describes the effect of changes in the modulus of elasticity of the stem material for both the original Charnley stem and the ciptimised shape on Kf as predicted by a 2D finite element (FE) model of the implanted prosthesis. The paper further describes a method for parametric optimisation to determine the best material properties of a layered composite femoral stem consisting of a core material (stainless steel) and an outer layer of a different material, the elastic modulus of which is used as a design variable. The overall objective of the optimisation was to maximise Kf in the proximal bone whilst at the same time constraining Kf at all cement interfaces to be no greater than its initial value. The results of the first study suggest that Young's moduli of about 145 and 210 GPa are optimal for the monolithic Charnley and optimised stems, respectively. A composite prosthesis with a layer of modulus 31 GPa added to the optimised stainless steel stem in the proximal region only was found to significantly increase the stresses in the proximal bone and reduce Kf in the cement whilst retaining the advantages of an outer stem profile very similar to that of the original Charnley prosthesis.
Keywords: Hip prosthesis, optimisation, fatigue notch factor, bone resorption, finite element analysis
DOI: 10.3233/BME-1997-7201
Journal: Bio-Medical Materials and Engineering, vol. 7, no. 2, pp. 83-98, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]