Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Joyce, T.J.
Affiliations: Centre for Rehabilitation and Engineering Studies, School of Mechanical and Systems Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne NE1 7RU, UK Tel.: +44 191 222 6214; Fax: +44 191 222 8600; E-mail: [email protected]
Abstract: The key joint of the forefoot during gait is the first metatarsophalangeal joint. It plays an important role in propelling the human form but can be subject to a number of diseases which can lead to its replacement with an artificial joint. Some of these designs of prosthesis employ a two-piece ball and socket arrangement and are available with a range of biomaterial couples including ceramic-on-ceramic, metal-on-metal and metal-on-polymer. Calculation of predicted lubrication regimes applicable to these implant designs was undertaken. Modelling the ball and socket implant as an equivalent ball-on-plane model and employing elastohydrodynamic theory allowed the minimum film thickness to be calculated and in turn the lambda ratio to indicate the lubrication regime. The calculations were undertaken for a 50 to 1500 N range of loading values, a 0 to 30 mm/s range of entraining velocities, and a 3 to 15 mm radius range of sizes. Calculations showed that the ceramic-on-ceramic and metal-on-metal implants could operate under fluid film lubrication, whereas the metal-on-polymer combination operated in the boundary lubrication regime. It was also recognized that manufacturing capabilities are critical to the radial clearances and values of surface roughness that can be achieved, and thus the predicted lubrication regime.
Keywords: Metatarsophalangeal, lubrication regimes, metal-on-metal, ceramic-on-ceramic, metal-on-polymer
Journal: Bio-Medical Materials and Engineering, vol. 18, no. 1, pp. 45-51, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]