Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: A Selection of Papers from the International Symposium on Advanced Bio-Materials and Engineering '93 (ISABE '93)
Article type: Research Article
Authors: Nishihara, Katsunari | Nakagiri, Shigeru
Affiliations: Department of Oral Surgery, Faculty of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku Tokyo 113, Japan | Department of Applied Physics and Applied Mechanics, Institute of Industrial Science, University of Tokyo, 7-22-1, Roppongi, Minato-ku, Tokyo 106, Japan
Abstract: Artificial roots must carry multiple forces during mastication. Stress distribution around a root depends upon the shape, material, and function of the root. Therefore, for biomechanical studies on artificial roots, triad research on the material, shape, and functional effect upon surrounding tissue is essential. For dental implants, there are two different functional systems against the masticatory force, i.e., gomphosis and ankylosis on osseointegration. Stress analyses of functioning new type (gomphosis) artificial roots were carried out in mandibular and maxilla models to study the triad effect using finite element analysis. The authors have already reported histological and biomechanical studies on the shape and functional effect. To observe the material effect biomechanically, artificial roots made of sintered hydroxyapatite and zirconium oxide were analyzed in the models. Thereafter, animal experiments using dogs were carried out to observe bone formation around artificial roots made of hydroxyapatite and zirconium oxide in the mandible and maxilla. The following results were obtained: The patterns of stress distribution around artificial roots of two different materials were not too different, and were exclusively dependent upon the root shape and structure of the jawbone. Around the artificial roots, bone formation coincided with a moderate stress distributing zone and principal stress trajectories. Through these experiments, the following conclusions were obtained: (a) Osteogenesis around artificial roots coincides with the stress distribution patterns. (b) Stress distribution patterns are dependent very little upon material properties but upon both the artificial root shape and the structure of the jawbone. (c) Optimization of the artificial root shape can be obtained by FEA in the models.
Keywords: artificial root, finite element analysis, shape effect, optimization, periimplantium
DOI: 10.3233/BME-1994-4302
Journal: Bio-Medical Materials and Engineering, vol. 4, no. 3, pp. 141-149, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]