Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Najarian, Siamak | Dargahi, Javad; | Heidari, Behnam
Affiliations: Faculty of Biomedical Eng., Biomechanics Dept., Amirkabir University of Technology, Tehran, Iran | CONCAVE Research Centre, CR‐200, Concordia University, Department of Mechanical and Industrial Eng., 1455 de Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8 | Department of Mechanical Engineering, University College Dublin, Belfield, D.4, Dublin, Republic of Ireland
Note: [] Corresponding author. Tel.: +1 514 848 7967; Fax: +1 514 848 8635; E‐mail: [email protected].
Abstract: In this paper, we report on the development of a three‐dimensional model of human lower lumbar spine based on actual geometry of L4–L5 motion segment. The simulation is performed on the model extracted from 2 mm slices of CT‐Scan data of a healthy subject. The finite element model includes different parts, such as, cortical shell, cancellous core, endplates, pedicle, lamina, transverse process, and spinous process. Additionally, it takes into account the intervertebral disc including the nucleus pulposus and annulus fibrosus. The seven ligamentous structures of the L4–L5 motion segment, such as, anterior longitudinal ligament, posterior longitudinal ligament, and supraspinous ligament, were also incorporated. Various biomechanical characteristics of the computer generated model are studied under different physiological loadings. The focus of this study is on the role of posterior elements on load sharing of the lower lumbar region. The simulation yields data on the stress distribution inside the vertebrae and the amount of resulting deformation that takes place. Different simulated models of an injured lumbar spine are also being analyzed for two cases of facetectomy and degraded nucleus disorders. It is shown that the inclusion of the posterior elements along with the ligamentous tissues lead to an increase in the stiffness and stability of the L4–L5 motion segment.
Keywords: Finite element analysis, lumbar spine, stability, motion segment
Journal: Bio-Medical Materials and Engineering, vol. 15, no. 3, pp. 145-158, 2005
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]