Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mukasheva, Farizaa | Zhanbassynova, Ainura | Erisken, Cevata;
Affiliations: [a] Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
Correspondence: [*] Corresponding author: Cevat Erisken. E-mail: [email protected], [email protected]
Abstract: BACKGROUND:The ligament is the soft tissue that connects bone to bone and, in case of severe injury or rupture, it cannot heal itself mainly because of its poor vascularity and dynamic nature. Tissue engineering carries the potential to restore the injured tissue functions by utilization of scaffolds mimicking the structure of native ligament. Collagen fibrils in the anterior cruciate ligament (ACL) have a diameter ranging from 20 to 300 nm, which defines the physical and mechanical properties of the tissue. Also, the ACL tissue exhibited a bimodal distribution of collagen fibrils. Currently, the ability to fabricate scaffolds replicating this structure is a significant challenge. OBJECTIVE:This work aims at i) measuring the diameter of collagens of bovine ACL tissue, ii) investigating the fabrication of sub-100 nm fibers, and iii) fabricating aligned scaffolds with bimodal diameter distribution (with two peaks) resembling the healthy ACL structure. It is hypothesized that such scaffolds can be produced by electrospinning polycaprolactone (PCL) solutions. METHODS:To test the hypothesis, various PCL solutions were formulated in acetone and formic acid in combination with pyridine, and electrospun to generate sub-100 nm fibers. Next, this formulation was adjusted to produce nanofibers with a diameter between 100 nm and 200 nm. Finally, these solutions were combined in the co-electrospinning process, i.e., two-spinneret electrospinning, to fabricate biomimetic scaffolds with a bimodal distribution. RESULTS:Electrospinning of 8% and 15% PCL solutions, respectively, resulted in the production of fibers with diameters below and above 100 nm. The combined scaffold exhibited a bimodal distribution of aligned fibers with peaks around 80 and 180 nm, thus mimicking the collagen fibrils of healthy ACL tissue. CONCLUSION:This research is expected to have a society-wide impact because it aims to enhance the health condition and life quality of a wide range of patients.
Keywords: Ligament, polycaprolactone, electrospinning, fiber diameter distribution, bimodal
DOI: 10.3233/BME-230193
Journal: Bio-Medical Materials and Engineering, vol. 35, no. 3, pp. 323-335, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]