Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: He, Fana; | Wang, Xinyua | Hua, Lub | Guo, Tingtingb
Affiliations: [a] School of Science, Beijing University of Civil Engineering and Architecture, Beijing, China | [b] Thrombosis Center, National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Correspondence: [*] Corresponding author: Fan He, School of Science, Beijing University of Civil Engineering and Architecture, Beijing, China. E-mail: [email protected]
Abstract: BACKGROUND:Microcirculation plays a key role in regulating blood flow but is not considered in previous research of hemodynamics. OBJECTIVE: A curved artery model is established to study its hemodynamic characteristics based on microcirculation boundary. METHODS:The hemodynamic model of a curved artery is constructed and simulated by computational fluid dynamics. The curved artery model is simulated by fluid-structure interaction. At the same time, a porous medium is used to simulate microcirculation as the outlet boundary. RESULTS:The distribution characteristics of the blood flow velocity, the pressure and the wall shear stress in different sections at different time of the cardiac cycle are obtained. The results show that the velocities in curved arteries decrease and the pressures gradually increase. The blood flow velocity waveform and value are affected and they are sensitive to the microcirculation boundary. However, the pressure value is only affected by the microcirculation function. CONCLUSIONS: This work is useful for researchers to deeply understand the hemodynamic characteristics of curved arteries. There is important clinical significance to analyze the pathogenesis of cardiovascular disease considering microcirculation function and its coupling effect.
Keywords: Curved artery, hemodynamics, numerical simulation, microcirculation, computational fluid dynamics
DOI: 10.3233/BME-211275
Journal: Bio-Medical Materials and Engineering, vol. 33, no. 6, pp. 437-451, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]