Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Correction
Authors: Hedia, H.S.; | Abdel‐Shafi, A.A.A. | Fouda, N.
Affiliations: Production and M/C Design Engineering Department, Mansoura University, Mansoura, Egypt
Note: [] Corresponding author. Tel.: +2050 344403; Fax.: +2050 344690.
Abstract: Stresses are generated in implant materials and bone, and at their interfaces. These stresses may affect the structural properties of the implant/bone system, or bring it to failure at some time in the postoperative period. Due to these stresses, acetabular cup loosening becomes an important problem for long term survival of total hip arthroplasty. It was found that metal backing would tend to reduce stresses in the underlying acrylic cement and bone. Yet, recent studies of load transfer around acetabular cups have shown that metal backing generates higher stress peaks in cement at the cup edges, while generates lower stress peaks in bone at the central part of acetabulum (dome), thus the bone at the dome becomes more stress shielded. In this study a numerical shape optimization procedure in combination with an axisymmetric finite element model was used in order to optimize the shape of a stainless steel metal backing shell. The design was to minimize fatigue notch factor in cement along cement/bone and cement/metal backing interfaces in order to prevent failure of cement mantel and loosening of acetabular components, at the same time increasing fatigue notch factor in bone at the center of acetabulum to prevent stress shielding. The results of this study indicate that cemented acetabular cup designs can be improved by using metal backing shells of non‐uniform thickness, thick at the dome and thin at edges. Fatigue notch factor in cement was reduced by 2.3% at cement/metal backing interface and increased by 1.3% in the central bone of acetabulum. Von Mises stresses in the cement edge were reduced by 17.8% and 19.3% along cement/bone and cement/metal backing interfaces, respectively. Thus the optimal design will reduce the possibility of fatigue fracture of cement and decrease the stress shielding effect and the likely incidence of bone resorption, whereby extend the expected life of the prostheses.
Keywords: Optimization, fatigue notch factor, von Mises stress, stress shielding, metal backing shell
Journal: Bio-Medical Materials and Engineering, vol. 10, no. 2, pp. 73-82, 2000
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]