Purchase individual online access for 1 year to this journal.
Price: EUR N/A
ISSN 1386-6338 (P)
ISSN 1434-3207 (E)
In Silico Biology is a scientific research journal for the advancement of computational models and simulations applied to complex biological phenomena. We publish peer-reviewed leading-edge biological, biomedical and biotechnological research in which computer-based (i.e.,
"in silico"
) modeling and analysis tools are developed and utilized to predict and elucidate dynamics of biological systems, their design and control, and their evolution. Experimental support may also be provided to support the computational analyses.
In Silico Biology aims to advance the knowledge of the principles of organization of living systems. We strive to provide computational frameworks for understanding how observable biological properties arise from complex systems. In particular, we seek for integrative formalisms to decipher cross-talks underlying systems level properties, ultimate aim of multi-scale models.
Studies published in
In Silico Biology generally use theoretical models and computational analysis to gain quantitative insights into regulatory processes and networks, cell physiology and morphology, tissue dynamics and organ systems. Special areas of interest include signal transduction and information processing, gene expression and gene regulatory networks, metabolism, proliferation, differentiation and morphogenesis, among others, and the use of multi-scale modeling to connect molecular and cellular systems to the level of organisms and populations.
In Silico Biology also publishes foundational research in which novel algorithms are developed to facilitate modeling and simulations. Such research must demonstrate application to a concrete biological problem.
In Silico Biology frequently publishes special issues on seminal topics and trends. Special issues are handled by Special Issue Editors appointed by the Editor-in-Chief. Proposals for special issues should be sent to the Editor-in-Chief.
About In Silico Biology
The term
"in silico"
is a pendant to
"in vivo"
(in the living system) and
"in vitro"
(in the test tube) biological experiments, and implies the gain of insights by computer-based simulations and model analyses.
In Silico Biology (ISB) was founded in 1998 as a purely online journal. IOS Press became the publisher of the printed journal shortly after. Today, ISB is dedicated exclusively to biological systems modeling and multi-scale simulations and is published solely by IOS Press. The previous online publisher, Bioinformation Systems, maintains a website containing studies published between 1998 and 2010 for archival purposes.
We strongly support open communications and encourage researchers to share results and preliminary data with the community. Therefore, results and preliminary data made public through conference presentations, conference proceeding or posting of unrefereed manuscripts on preprint servers will not prohibit publication in ISB. However, authors are required to modify a preprint to include the journal reference (including DOI), and a link to the published article on the ISB website upon publication.
Abstract: Moonlighting refers to a protein with at least two unrelated, mechanistically different functions. As a concept, moonlighting describes a large and diverse group of proteins which have been discovered in a multitude of organisms. As of today, a systematized view on these proteins is missing. Here, we propose a classification of moonlighting proteins by two classifiers. We use the function of the protein as a first classifier: activating - activating (Type I), activating - inhibiting (Type II), inhibiting - activating (Type III) and inhibiting - inhibiting (Type IV). To further specify the type of moonlighting protein, we used a second…classifier based on the character of the factor that switches the function of the protein: external factor affecting the protein (Type A), change in the first pathway (Type B), change in the second pathway (Type C), equal competition between both pathways (Type D). Using a small two-pathway model we simulated these types of moonlighting proteins to elucidate possible behaviors of the types of moonlighting proteins. We find that, using the results of our simulations, we can classify the behavior of the moonlighting types into Blinker, Splitter andSwitch.
Show more
Abstract: Micro-Tissue Engineered Neural Networks (Micro-TENNs) are living three-dimensional constructs designed to replicate the neuroanatomy of white matter pathways in the brain and are being developed as implantable micro-tissue for axon tract reconstruction, or as anatomically-relevant in vitro experimental platforms. Micro-TENNs are composed of discrete neuronal aggregates connected by bundles of long-projecting axonal tracts within miniature tubular hydrogels. In order to help design and optimize micro-TENN performance, we have created a new computational model including geometric and functional properties. The model is built upon the three-dimensional diffusion equation and incorporates large-scale uni- and bi-directional growth that simulates realistic neuron morphologies.…The model captures unique features of 3D axonal tract development that are not apparent in planar outgrowth and may be insightful for how white matter pathways form during brain development. The processes of axonal outgrowth, branching, turning and aggregation/bundling from each neuron are described through functions built on concentration equations and growth time distributed across the growth segments. Once developed we conducted multiple parametric studies to explore the applicability of the method and conducted preliminary validation via comparisons to experimentally grown micro-TENNs for a range of growth conditions. Using this framework, the model can be applied to study micro-TENN growth processes and functional characteristics using spiking network or compartmental network modeling. This model may be applied to improve our understanding of axonal tract development and functionality, as well as to optimize the fabrication of implantable tissue engineered brain pathways for nervous system reconstruction and/or modulation.
Show more
Abstract: A dynamical model of the pathophysiological behaviors of IL18 and IL10 cytokines with their receptors is tested against data for the case of early sepsis. The proposed approach considers the surroundings (organs and bone marrow) and the different subsystems (cells and cyctokines). The interactions between blood cells, cytokines and the surroundings are described via mass balances. Cytokines are adsorbed onto associated receptors at the cell surface. The adsorption is described by the Langmuir model and gives rise to the production of more cytokines and associated receptors inside the cell. The quantities of pro and anti-inflammatory cytokines present in the body…are combined to give global information via an inflammation level function which describes the patient’s state. Data for parameter estimation comes from the Sepsis 48 H database. Comparisons between patient data and simulations are presented and are in good agreement. For the IL18/IL10 cytokine pair, 5 key parameters have been found. They are linked to pro-inflammatory IL18 cytokine and show that the early sepsis is driven by components of inflammatory character.
Show more
Keywords: Early sepsis, dynamic modeling, parameter estimation, IL18 and IL10
cytokines, inflammation