Purchase individual online access for 1 year to this journal.
Price: EUR N/A
ISSN 1386-6338 (P)
ISSN 1434-3207 (E)
In Silico Biology is a scientific research journal for the advancement of computational models and simulations applied to complex biological phenomena. We publish peer-reviewed leading-edge biological, biomedical and biotechnological research in which computer-based (i.e.,
"in silico"
) modeling and analysis tools are developed and utilized to predict and elucidate dynamics of biological systems, their design and control, and their evolution. Experimental support may also be provided to support the computational analyses.
In Silico Biology aims to advance the knowledge of the principles of organization of living systems. We strive to provide computational frameworks for understanding how observable biological properties arise from complex systems. In particular, we seek for integrative formalisms to decipher cross-talks underlying systems level properties, ultimate aim of multi-scale models.
Studies published in
In Silico Biology generally use theoretical models and computational analysis to gain quantitative insights into regulatory processes and networks, cell physiology and morphology, tissue dynamics and organ systems. Special areas of interest include signal transduction and information processing, gene expression and gene regulatory networks, metabolism, proliferation, differentiation and morphogenesis, among others, and the use of multi-scale modeling to connect molecular and cellular systems to the level of organisms and populations.
In Silico Biology also publishes foundational research in which novel algorithms are developed to facilitate modeling and simulations. Such research must demonstrate application to a concrete biological problem.
In Silico Biology frequently publishes special issues on seminal topics and trends. Special issues are handled by Special Issue Editors appointed by the Editor-in-Chief. Proposals for special issues should be sent to the Editor-in-Chief.
About In Silico Biology
The term
"in silico"
is a pendant to
"in vivo"
(in the living system) and
"in vitro"
(in the test tube) biological experiments, and implies the gain of insights by computer-based simulations and model analyses.
In Silico Biology (ISB) was founded in 1998 as a purely online journal. IOS Press became the publisher of the printed journal shortly after. Today, ISB is dedicated exclusively to biological systems modeling and multi-scale simulations and is published solely by IOS Press. The previous online publisher, Bioinformation Systems, maintains a website containing studies published between 1998 and 2010 for archival purposes.
We strongly support open communications and encourage researchers to share results and preliminary data with the community. Therefore, results and preliminary data made public through conference presentations, conference proceeding or posting of unrefereed manuscripts on preprint servers will not prohibit publication in ISB. However, authors are required to modify a preprint to include the journal reference (including DOI), and a link to the published article on the ISB website upon publication.
Abstract: Articular cartilage is characterized by low cell density of only one cell type, chondrocytes, and has limited self-healing properties. When articular cartilage is affected by traumatic injuries, a therapeutic strategy such as autologous chondrocyte implantation is usually proposed for its treatment. This approach requires in vitro chondrocyte expansion to yield high cell number for cell transplantation. To improve the efficiency of this procedure, it is necessary to assess cell dynamics such as migration, proliferation and cell death during culture. Computational models such as cellular automata can be used to simulate cell dynamics in order to enhance the result of…cell culture procedures. This methodology has been implemented for several cell types; however, an experimental validation is required for each one. For this reason, in this research a cellular automata model, based on random-walk theory, was devised in order to predict articular chondrocyte behavior in monolayer culture during cell expansion. Results demonstrated that the cellular automata model corresponded to cell dynamics and computed-accurate quantitative results. Moreover, it was possible to observe that cell dynamics depend on weighted probabilities derived from experimental data and cell behavior varies according to the cell culture period. Thus, depending on whether cells were just seeded or proliferated exponentially, culture time probabilities differed in percentages in the CA model. Furthermore, in the experimental assessment a decreased chondrocyte proliferation was observed along with increased passage number. This approach is expected to having other uses as in enhancing articular cartilage therapies based on tissue engineering and regenerative medicine.
Show more
Keywords: Cellular automata, chondrocyte, migration, proliferation, cell death
Abstract: Cells maintain cellular homeostasis employing different regulatory mechanisms to respond external stimuli. We study two groups of signal-dependent transcriptional regulatory mechanisms. In the first group, we assume that repressor and activator proteins compete for binding to the same regulatory site on DNA (competitive mechanisms). In the second group, they can bind to different regulatory regions in a noncompetitive fashion (noncompetitive mechanisms). For both competitive and noncompetitive mechanisms, we studied the gene expression dynamics by increasing the repressor or decreasing the activator abundance (inhibition mechanisms), or by decreasing the repressor or increasing the activator abundance (activation mechanisms). We employed delay differential…equation models. Our simulation results show that the competitive and noncompetitive inhibition mechanisms exhibit comparable repression effectiveness. However, response time is fastest in the noncompetitive inhibition mechanism due to increased repressor abundance, and slowest in the competitive inhibition mechanism by increased repressor level. The competitive and noncompetitive inhibition mechanisms through decreased activator abundance show comparable and moderate response times, while the competitive and noncompetitive activation mechanisms by increased activator protein level display more effective and faster response. Our study exemplifies the importance of mathematical modeling and computer simulation in the analysis of gene expression dynamics.
Show more
Abstract: A variety of mathematical models is used to describe and simulate the multitude of natural processes examined in life sciences. In this paper we present a scalable and adjustable foundation for the simulation of natural systems. Based on neighborhood relations in graphs and the complex interactions in cellular automata, the model uses recurrence relations to simulate changes on a mesoscopic scale. This implicit definition allows for the manipulation of every aspect of the model even during simulation. The definition of value rules ω facilitates the accumulation of change during time steps. Those changes may result from different physical, chemical…or biological phenomena. Value rules can be combined into modules, which in turn can be used to create baseline models. Exemplarily, a value rule for the diffusion of chemical substances was designed and its applicability is demonstrated. Finally, the stability and accuracy of the solutions is analyzed.
Show more
Keywords: Cellular automaton, graph, diffusion, cell biology, systems biology