Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gollagi, Shantappa G.a; * | Maheswari, S.S.b | Sapkale, Pallavi V.c | Poojitha, Sabbinenid
Affiliations: [a] K.L.E. Society’s, KLE College of Engineering & Technology, Chikodi, Karnataka, India | [b] Panimalar Engineering College, Chennai, Tamil Nadu, India | [c] Ramrao Adik Institute of Technology, Nerul, Navi Mumbai, India | [d] School of Management and Commerce, Mallareddy University, Hyderabad, Telangana-500100, India
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Channel estimation is crucial for massive multiple-input multiple-output (MIMO) systems to scale up multi-user (MU) MIMO, providing great improvement in spectral and energy efficiency. The nature of non-orthogonal cause pilot contamination is experienced only while estimating multi-cell MIMO scheme with the training and it is misplaced while narrowing concentration to multi-cell or one-cell setting, where information of the channel is assumed to be obtainable at no cost. Non-orthogonal multiple access (NOMA) serves numerous users concurrently utilizing channel gain differences. The advancement in massive MIMO-NOMA technology has offered diverse techniques recently for reducing pilot contamination in massive MIMO-NOMA based on pilot allocation. Here, a new approach called War Strategy Chimp Optimization+Deep Neuro-Fuzzy Network (WSChO+DNFN) is designed for the estimation of channels to reduce pilot contamination in a massive MIMO-NOMA system. It takes place in two phases, the transmitter and the receiver phase. The channel estimation is conducted by DNFN that is tuned by devised WSChO. Furthermore, WSChO is an amalgamation of War Strategy Optimization (WSO) and Chimp Optimization Algorithm (ChOA). Additionally, the WSChO+DNFN attained minimal values of BER and normalized MSE of 0.000103 and 0.000074, respectively. The proposed method has achieved a performance gain of 44.39%, 19.26%, 9.17%, 5.22%, 9.92%, and 6.03% compared to the Orthogonal Frequency Division Multiplexing (OFDM), Group Successive Interference Cancellation assisted Semi-Blind Channel Estimation Scheme (GSIC_SBCE), Sector-Based Pilot Assignment Scheme (PAS), Convolutional Neural Network (CNN), User Segregation based Channel Estimation (USCE), Optimal Channel Estimation using Hybrid Machine Learning (OCE_HML), respectively.
Keywords: Massive multiple-input multiple-output, War Strategy Optimization (WSO), non-orthogonal multiple access, Chimp Optimization Algorithm (ChOA), Deep Neuro-fuzzy network (DNFN)
DOI: 10.3233/JHS-230043
Journal: Journal of High Speed Networks, vol. 30, no. 3, pp. 355-373, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]