Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Sichaoa | Huang, Liejianga | Pan, Yuanjuna | Hu, Yuanchaob; * | Shen, Dilonga | Dai, Jianganga
Affiliations: [a] Hangzhou Xinmei Complete Electric Appliance Manufacturing Co., Ltd, Hangzhou, China | [b] Shandong University of Technology, Zibo, China
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: Today, the Internet of Things (IoT) has an important role for deploying power and energy management in the smart grids as emerging trend for managing power stability and consumption. In the IoT, smart grids has important role for managing power communication systems with safe data transformation using artificial intelligent approaches such as Machine Learning (ML), evolutionary computation and meta-heuristic algorithms. One of important issues to manage renewable energy consumption is intelligent aggregation of information based on smart metering and detecting the user behaviors for power and electricity consumption in the IoT. To achieve optimal performance for detecting this information, a context-aware prediction system is needed that can apply a resource management effectively for the renewable energy consumption for smart grids in the IoT. Also, prediction results from machine learning methods can be useful to manage optimal solutions for power generation activities, power transformation, smart metering at home and load balancing in smart grid networks. This paper aims to design a new periodical detecting, managing, allocating and analyzing useful information regarding potential renewable power and energy consumptions using a context-aware prediction approach and optimization-based machine learning method to overcome the problem. In the proposed architecture, a decision tree algorithm is provided to predict the grouped information based on important and high-ranked existing features. For evaluating the proposed architecture, some other well-known machine learning methods are compared to the evaluation results. Consequently, after analyzing various components by solving different smart grids datasets, the proposed architecture’s capacity and supremacy are well determined among its traditional approaches.
Keywords: Smart grids, IoT, energy management, machine learning, decision tree, accuracy
DOI: 10.3233/JHS-230002
Journal: Journal of High Speed Networks, vol. 29, no. 4, pp. 295-305, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]