Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected Proceedings of the 6th Asian Congress for Mirocirculation (ACM'05) (Tokyo, February 25 and 26, 2005)
Article type: Research Article
Authors: Tomita, Minoru; | Tanahashi, Norio | Takeda, Hidetaka | Istvan Schiszler, ; | Osada, Takashi | Unekawa, Miyuki | Suzuki, Norihiro
Affiliations: Department of Neurology, School of Medicine, Keio University, Tokyo 160-8582, Japan | Department of Neurology, Saitama Medical School, Saitama, Japan | Department of Neurology, National Hospital Organization Saitama Hospital, Saitama, Japan
Note: [] Corresponding author. E-mail: [email protected]
Note: [] Present address: Petofi utca 4, Torokbalint 2045, Hungary.
Abstract: Despite numerous reports on the regulation of cerebral arterial blood flow, little work has been done on that of the capillary and venous system. We have examined capillo-venous blood flow in the rat intraparenchymal cerebral cortex, employing a high-speed video confocal fluorescence microscope and our own software (KEIOIS-2) to track individual RBCs and to document velocity changes in single capillaries and veins. We found temporal and spatial heterogeneous changes in capillary RBC density (hematocrit), RBC recruitment, oscillation of capillary flow or vasomotion, and capillary density unrelated to arteriolar diametric changes. In veins, blood flow was also quite variable in time and space, and at a high frame rate venous blood per se was observed as a moving column of amorphous RBC aggregates with irregular edges; we believe this is the first report of such an observation under physiological conditions. The formation of such intravascular RBC aggregates would enforce slowing of blood flow and vice versa: RBC aggregation was in turn entirely flow-dependent. In rapid venous flow, RBCs appeared as a straight gathering of individually separated and dispersed cells. At capillo-venous junctions, an “RBC pouring” process appeared to occur, with RBCs either being sucked up from the capillary, merging, or being held back in the capillary. Changes in venous blood viscosity due to RBC aggregation are likely to be involved in this process. These findings suggest that the capillo-venous junction somehow participates in the regulation of appropriate tissue capillary flow in toto.
Keywords: Shear dependent viscosity, intravascular RBC aggregation, capillo-venous junction, single capillary flow, RBC tracking, RBC velocity
Journal: Clinical Hemorheology and Microcirculation, vol. 34, no. 1-2, pp. 51-57, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]