Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Braune, S.a | Bäckemo, J.a | Lau, S.a | Heuchel, M.a | Kratz, K.a | Jung, F.a | Reinthaler, M.a; c | Lendlein, A.a; b; *
Affiliations: [a] Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany | [b] Institute of Chemistry, University of Potsdam, Potsdam, Germany | [c] Department for Cardiology, Charité Universitätsmedizin, Berlin, Germany
Correspondence: [*] Corresponding author: Andreas Lendlein. E-mail: [email protected].
Abstract: Nanoporous microparticles prepared from poly(ether imide) (PEI) are discussed as candidate adsorber materials for the removal of uremic toxins during apheresis. Polymers exhibiting such porosity can induce the formation of micro-gas/air pockets when exposed to fluids. Such air presenting material surfaces are reported to induce platelet activation and thrombus formation. Physical or chemical treatments prior to implantation are discussed to reduce the formation of such gas nuclei. Here, we report about the influence of different rewetting procedures – as chemical treatments with solvents – on the thrombogenicity of hydrophobic PEI microparticles and PEI microparticles hydrophilized by covalent attachment of poly(vinyl pyrrolidone) (PVP) of two different chain lengths. Autoclaved dry PEI particles of all types with a diameter range of 200 – 250 μm and a porosity of about 84% ±2% were either rewetted directly with phosphate buffered saline (24 h) or after immersion in an ethanol-series. Thrombogenicity of the particles was studied in vitro upon contact with human sodium citrated whole blood for 60 min at 5 rpm vertical rotation. Numbers of non-adherent platelets were quantified, and adhesion of blood cells was qualitatively analyzed by bright field microscopy. Platelet activation (percentage of CD62P positive platelets and amounts of soluble P-Selectin) and platelet function (PFA100 closure times) were analysed. Retention of blood platelets on the particles was similar for all particle types and both rewetting procedures. Non-adherent platelets were less activated after contact with ethanol-treated particles of all types compared to those rewetted with phosphate buffered saline as assessed by a reduced number of CD62P-positive platelets and reduced amounts of secreted P-Selectin (P < 0.05 each). Interestingly, the hydrophilic surfaces significantly increased the number of activated platelets compared to hydrophobic PEI regardless of the rewetting agent. This suggests that, apart from wettability, other material properties might be more important to regulate platelet activation. PFA100 closure times were reduced and within the reference ranges in the ethanol group, however, significantly increased in the saline group. No substantial difference was detected between the tested surface modifications. In summary, rewetting with ethanol resulted in a reduced thrombogenicity of all studied microparticles regardless of their wettability, most likely resulting from the evacuation of air from the nanoporous particles.
Keywords: Biomaterial, polymer, microparticle, thrombogenicity, hemocompatibility, dynamic in-vitro test, rewetting
DOI: 10.3233/CH-201029
Journal: Clinical Hemorheology and Microcirculation, vol. 77, no. 4, pp. 367-380, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]