Platelet-rich plasma stimulates dermal microvascular endothelial cells and adipose derived stem cells after external radiation
Issue title: Selected Presentations held at the 34th Conference of the German Society for Clinical Microcirculation and Hemorheology, Regensburg, Germany, 27–28 November, 2015
Guest editors: L. Prantl, E.M. Jung and F. Jung
Article type: Research Article
Authors: Haubner, F.a; 1; * | Muschter, D.a; 1 | Schuster, N.a | Pohl, F.b | Ahrens, N.c | Prantl, L.d | Gassner, H.G.a
Affiliations: [a] Department of Otorhinolaryngology, Division of Facial Plastic Surgery, University of Regensburg, Germany | [b] Department of Radiotherapy, University of Regensburg, Germany | [c] Department of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Germany | [d] Center for Plastic, Aesthetic, Hand & Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
Correspondence: [*] Corresponding author: Frank Haubner, M.D., Department of Otorhinolaryngology, University of Regensburg, Germany, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany. Tel.: +49 941 9449415; Fax: +49 941 9449515; E-mail: [email protected]
Note: [1] Both authors contributed equally to this work.
Abstract: BACKGROUND:Platelet-rich plasma (PRP) products are currently suggested in the treatment of chronic wounds due to possible pro-angiogenic effects. Microvascular compromise represents the major component in radiogenic wound healing complications. The effects of PRP on irradiated cells of the cutaneous wound healing process are still poorly understood. MATERIAL AND METHODS:Human dermal microvascular endothelial cells (HDMEC) and human adipose derived stem cells (hASC) were cultured and irradiated with doses of 2 to 12 Gy. PRP was activated, characterized and added to the incubation media in different concentrations after external radiation. Cell count was determined 48 h after radiation using a semi-automated cell counting system. Levels of interleukin-6 (IL-6), basic fibroblast growth factor (bFGF) and soluble intercellular adhesion molecule-1 (sICAM-1) in the supernatants of HDMEC and hASC co-cultures were determined by enzyme-linked immunosorbent assay (ELISA). Non-irradiated hASC and HDMEC served as controls. RESULTS:The employed PRP preparations were characterized and contained platelet derived growth factor (PDGF-AB), vascular endothelial growth factor (VEGF), bFGF and high levels of sICAM-1. Addition of PRP to irradiated cultures of HDMEC and hASC prevented profound radiation-induced decline in cell numbers. 10% PRP restored cell numbers to levels of untreated, non-irradiated cultures. Basic FGF expression was decreased significantly in hASC monocultures treated with 10% PRP without external radiation and after irradiation with 6 and 12 Gy. These inhibitory effects of PRP were also observed in HDMEC. In contrast, co-cultures of HDMEC-ASC showed a dose-dependent increase in bFGF expression when treated with 5 or 10% PRP. Doses of 6 and 12 Gy increased IL-6 expression in cultures stimulated with 5% PRP. CONCLUSIONS:Use of PRP in co-cultures of hASC and HDMEC restores proliferative defects caused by external radiation probably by induction of bFGF. Under irradiated conditions, PRP might induce pro-inflammatory stimuli which could be beneficial in treatment of chronic wounds where healing processes are defective. Combined use of hASC and PRP products might be helpful in the treatment of radiogenic wounds.
Keywords: Microvascular endothelial cells, human adipose-derived stem cells, endothelial dysfunction, cytokines, adhesion molecules, growth factors, radiation therapy
DOI: 10.3233/CH-151982
Journal: Clinical Hemorheology and Microcirculation, vol. 61, no. 2, pp. 279-290, 2015