Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected Proceedings of the 15th Conference of the European Society for Clinical Hemorheology and Microcirculation (ESCHM), June 28–July 1, 2009, Pontresina, Switzerland
Article type: Research Article
Authors: Baskurt, O.K. | Meiselman, H.J.
Affiliations: Department of Physiology, Akdeniz University, Antalya, Turkey | Department of Physiology and Biophysics, Keck School of Medicine, Los Angeles, CA, USA
Note: [] Corresponding author: Dr. Oguz K. Baskurt, Department of Physiology, Akdeniz University, Faculty of Medicine, Antalya, Turkey. Tel.: +90 242 249 6963; Fax: +90 242 227 4483; E-mail: [email protected]
Abstract: The flow properties of blood and its components vary widely throughout the animal kingdom. Even if nucleated avian and reptile red blood cells (RBC) are excluded from the analysis, RBC exhibit different rheological behavior among mammalian species. Both RBC aggregation and cellular deformability have been reported to vary among species, including placental mammals, marsupials, terrestrial and aquatic mammals. Although the relationships between blood flow behavior and species-specific characteristics have not been systematically investigated, studies to date allow recognition of interesting patterns, especially for RBC properties. These properties do not correlate with simple cellular parameters (e.g. mean cell volume), but more detailed analysis of RBC structure may reveal cellular aspects (e.g. surface charge density) that can be related to rheologic behavior. It has been postulated that the athletic capacity of mammalian species may predict the aggregation behavior of their RBC, but this hypothesis has not been supported by data from a wide range of athletic and sedentary species. Aquatic mammals also exhibit a very interesting diversity of hemorheological properties, which again are not yet easily related to specific circulatory adaptations. Data from current comparative studies suggest that a better understanding of the relations between specific hemorheological properties and specific hemodynamic adaptations in a variety of species should contribute to a better understanding of circulatory behavior; future studies are thus clearly indicated.
Keywords: Mammalian species, comparative physiology, blood viscosity, erythrocyte deformability, erythrocyte aggregation
DOI: 10.3233/CH-2010-1287
Journal: Clinical Hemorheology and Microcirculation, vol. 45, no. 2-4, pp. 101-108, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]