Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shin, S.; | Hou, J.X. | Suh, J.S.; | Singh, M.
Affiliations: Department of Mechanical Engineering, Korea University, Seoul, Korea 136-713 | School of Mechanical Engineering, Kyungpook National University, Daegu, Korea 702-701 | Department of Laboratory Medicine, Kyungpook National University, Daegu, Korea 700-721 | Center for Biomedical Engineering, S.G.N. Educational Foundation, Chennai-42, India
Note: [] Corresponding author. E-mail: [email protected].
Note: [] Corresponding author. E-mail: [email protected].
Abstract: The deformability of erythrocytes primarily depends on the composition of the membrane and cytoplasm, which consist of hemoglobin and other constituents. Current techniques that measure erythrocyte deformability often require labor-intensive and time-consuming measurement processes. This article describes a newly developed microfluidic ektacytometer (RheoScan-D) that adopts advanced microfluidic rheometry and conventional laser-diffraction technique to determine the deformability of erythrocytes. Experiments are carried out to measure changes in deformability by treating erythrocytes in chemical agents with various concentrations (0, 0.3, 0.5 and 1.0 mM) of hydrogen peroxide, glutaraldehyde and diamide, and also by incubating erythrocytes at 49°C for various time intervals (0, 5, 10 and 30 min), which affect the deformability through interaction with various constituents of erythrocytes. The measured Elongation Index (EI) of normal erythrocytes, a parameter directly related to erythrocyte deformability, at various shear stresses is in excellent agreement with those measured by a conventional ektacytometer (LORCA). The present technique is sensitive in detecting changes as produced by various chemical agents and high temperature. Alterations produced by hydrogen peroxide are the minimum and the maximums are produced by diamide treatment.
Keywords: Erythrocyte, deformability, microfluidics, ektacytometer, hardening
Journal: Clinical Hemorheology and Microcirculation, vol. 37, no. 4, pp. 319-328, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]