Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hasan, Raqibula | Souri, Alirezaa; b; *
Affiliations: [a] Department of Software Engineering, Faculty of Engineering, Halic University, Istanbul, 34060, Turkey | [b] Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: This paper proposes a low power consuming system for monitoring elderly people’s activities and their health conditions. The proposed system has two activity recognition modules: smartphone sensor-based wearable module; infrared grid sensor-based remote module. The two activity recognition modules work in a coordinated way. The fraction of the time the person is detected by the infrared sensor, the smartphone remains idle. As a result, energy consumption in the smartphone is reduced significantly, and hence the battery lifetime is increased. In the smartphone, a Feed-forward Neural Network (FNN) based activity recognition algorithm is implemented using fixed-point computation to further reduce energy consumption. A Convolutional Neural Network is used in the infrared sensor-based activity recognition module. The proposed system also has real-time health monitoring capability, which is based on ECG signal classification. A FNN leveraging fixed-point operation is used for ECG signal classification on an embedded ARM processor. Proposed fixed-point implementations of the FNNs are faster than floating-point implementation and require 50% less memory to store the neural network model parameters without loss of classification accuracy.
Keywords: IoT system, elderly monitoring, ECG signal classification, activity recognition, fixed-point operation
DOI: 10.3233/JHS-240001
Journal: Journal of High Speed Networks, vol. 30, no. 4, pp. 607-618, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]